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Abstract Bridges should be monitored periodically in order to assess the bridge
health at any given time. The sensors send the acceleration and displacement data of
a bridge response under earthquakes loading to the system server. This study aims
to conduct the early-warning intelligent system based upon the performance of the
acceleration and displacement data. The damage detection in the system applied the
Neural Networks for prediction of a bridge condition at the real time. The architecture
of Neural Networks’ model used one input layer, which consists of acceleration
and displacement data domain, two hidden layers and an output layer with four
neurons consist of safety level, Immediate Occupancy (IO), Life Safety (LS) and
Collapse Prevention (CP). The IO, LS and CP are the bridge condition which indicates
the extent of bridge health condition ranging from the light damage until high-risk
level during and after subject to six earthquakes data. The training activation used
the Gradient Descent Back-propagation and activation transfer function used Log
Sigmoid function. The early-warning system is applied on 3 spans of box girder
bridge model which is monitored in the local and remote server. The result showed
that the evaluation of bridge condition using alert-warning in the bridge monitoring
system can help the bridge authorities to repair and maintain the bridge in the future.
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1 Introduction

Bridge monitoring needs to be carried out regularly in order to maintain and evaluate
bridge condition periodically. Currently, the information technology is capable to
helping the bridge owner to supervise the bridge condition from remote area through
the Internet connection. The installed sensors will sent the acceleration and displace-
ment data to the acquisition tools. The prediction of a bridge damage uses the Neural
Network for a bridge structure based on the acceleration and displacement data which
has been conducted in the previous study [1].

Many researchers have discussed the application of Neural Network in the bridge
engineering field such as [2, 3] and [4]. Other researchers have conducted study about
the best performance of Neural Network for prediction of sensors’ data for the axial
bearing capacity by [5], and the strain of FBG sensors which are based on the time
domain by [6]. However, there is limited discussion pertaining to the performance of
acceleration and displacement data from sensors using the Neural Networks method,
especially for early-warning system on the bridges monitoring.

This study aims to develop and apply the early-warning system on bridge man-
agement system based on the acceleration and displacement data domain for damage
prediction due to earthquakes load. The system can detect even minor to major dam-
age on the bridge structure. Thereby, the bridge authorities can provide appropriate
assessment for maintenance, reparation and improvement the bridge function.

2 Bridge Monitoring Under the Earthquake Load

Regular monitoring of bridge can immensely help the bridge authorities to know and
detect the bridge condition early through the sensors data reading. The sensors will
sent the acceleration and displacement data to the server through the data acquisi-
tion. In structural dynamic, the response of the bridge structure due to earthquakes
commonly is derived from (1)

[M]{ü} + [C]{u̇} + [K]{u} = −[M]{üg} (1)

where [M], [C] and [K] are matrix of mass, damping and stiffness respectively.
Meanwhile ü, u̇, and u are each the vector of acceleration, velocity, and displacement
of a bridge response. Vector üg is acceleration of earthquake excitation. By using the
uncoupling procedure, the modal equation of nth mode can be written as (2).

ü + 2γnωnu̇n + ω2un = −1/αnüg (2)

Displacement for each mode shown as (3)

u(t) =
∑

αnun(t) (3)
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Fig. 1 Time history of six earthquakes data from PEER [9]

where γn, τ, and αn are damping ratio, frequency and n number of mode shape
respectively. The acceleration is generated by second time derivative of displacement
function. The displacement values of a bridge response describe the performance of
the bridge under an earthquake loading. In bridge monitoring, both of acceleration
and displacement values can be obtained from measurement by sensors which are
installed on the bridge. The acceleration and displacement values can be produced
from finite-element analysis using a computer program [1].

According to [7], normally, damage of bridge structure is defined as the inten-
tional or unintentional changes in material and geometric properties of the bridge,
including changes in boundary or supporting conditions and structural connectivity,
which adversely affect the current or future serviceability of the bridge. Damage can
occur under large transient loads such as strong motion earthquakes and can also be
accumulated incrementally over long periods of time due to factors such as fatigue
and corrosion damage.

Time history analysis shall be performed with at least three time-histories data
sets of ground motion. Since three time history data sets are used in the analysis of
structure, the maximum value of each response parameter shall be used to determine
design acceptability [8]. Time history data in this study is adopted from [9] as shown
in Fig. 1. The Peak Ground Acceleration (PGA) of the earthquakes are 0.4731G
(4.64 m/s2) for Loma Prieta earthquake, 0.3051G (2.99 m/s2) for San Francisco
earthquake, 0.2363G (2.32 m/s2) for Northridge earthquake, 0.122G (1.197 m/s2)

for Kobe earthquake, 0.1539G (1.51 m/s2) for San Fernando earthquake, and 0.062G
(0.61 m/s2) for Chi-chi earthquake.

The acceptance criteria of piers damage are based on structural performance levels
in Federal Emergency Management Agency (FEMA) 356. The damage criteria are
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divided into 3 categories, Immediate Occupancy (IO), Life Safety (LS) and Collapse
Prevention (CP). The IO category describes the structure as still safe to be occupied
after an earthquake has occurred. In the LS category, some structural elements and
components are severely damaged but the risk of life-threatening injury is low. The
CP category describes that the structure is on the verge of partial or total collapse
and there is significant risk of injury.

3 Application of Neural Networks in Early-Warning System

Reference [3] has applied the Neural Networks in the study of a bridge under dynamic
load, especially general traffic load. The objective of the research is to estimate
the bridge displacement which corresponds to the strain of the bridge. The other
researchers [10] studied the acceleration-based approach using Neural Networks to
predict the displacement of building response under earthquake excitation. The inputs
data are the acceleration, velocity and displacement at ground and several stories of
building.

Early-warning system in this study adopted the Neural Network Back Propagation
(BPNN) algorithm to predict the criteria of damage during and after earthquakes.
The best performances of BPNN depend on the selection of suitable initial weight,
learning rate, momentum, networks architecture model and activation function. The
architecture model for this system has n number of input neurons, two hidden layers
with n neurons and an output layer consists of damage levels IO, LS and CP. The input
networks consist of time-acceleration domain and time-displacement domain of the
bridge seismic response analysis. The numbers of input correspond to the numbers
of sensor which are installed on the bridge monitored. Meanwhile the output layer
is the level of a bridge health condition due to an earthquake, which is resulted by
finite-element analysis software. The architecture model of Neural Networks for this
study is illustrated in Fig. 2.

The study used Gradient Descent Back-propagation as training function to mini-
mize the sum squared error (E) between the output value of Neural Network and the
given target values. The total error is defined as (4).

E = 1

2

∑

j⊂J

(tj − aj)
2 (4)

where tj defines target value, aj denotes activation value of output layer, and J is set
of training examples. The steps are repeated until the mean-squared error (MSE) of
the output is sufficiently small [11].

The final output is generated by a non linear filter σ caller activation function or
transfer function. The transfer function for this model used Log Sigmoid function,
which has a range of [0, 1] to obtain the output. This function is differentiable function
and suitable to be used in BPNN multilayer as shown in (5).
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Fig. 2 The architecture model of neural networks with 2 hidden layers in the early-warning system

aj = 1

(1 + e−anet,j)
(5)

where anet,j = [∑l
i=1 wijai] + θj.

Each i represents one of the units of layer l connected to unit j and θj which
represents the bias.

The weight, wij of networks has been adjusted to reduce the overall error. The
updated weight on the link connected to the ith and jth neuron of two adjacent layers
is defined as,

δWij = η(νE/νWij) (6)

where, η is the learning rate parameter with range 0–1 and ν E/νWi j is the error
gradient with reference to the weight.

The input data has been normalized by a linear normalization equation as follows:

z∼
i = (zi − zmin)/(zmax − zmin) (7)

where z∼
i is the normalized input values, zi the original data, zmax and zmin are the

maximum and minimum values.
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Fig. 3 Sensors location on the 3 spans of box girder bridge model

4 A Case Study

The previous study [1] has conducted the performance of displacement and accelera-
tion data domain for a 3 spans box girder concrete bridge using 2 sensors on the piers.
In this study the 8 sensors were assumed to be installed along the bridge as shown in
Fig. 3. The sensors measured the acceleration and displacement values of the bridge
response. The lengths of the bridge spans are 79, 110, and 79 m respectively.

The bridge model in Fig. 3 has been analyzed using the finite-element analysis
software. The non linear time history analysis has been applied in the model so that
the behavior and condition of the model due to earthquake can be known as a detail
at the given time. The bridge model in this study has been simulated to receive six
excitations of earthquake as shown in Fig. 1. Thereby, responses of bridge structure
due to some earthquakes have been applied as input in the training process.

The damage of structural elements from finite-element analysis are described in
Fig. 4. The criteria of bridge damage are based on standard of Federal Emergency
Management Agency (FEMA )356 [8]. The operation level is described as B, which
states transition from safe level to IO level. The level before damage is described as
S (safe level). Figure 4 illustrates the point of high risk damage due to New Zealand
earthquake occurred at bottom of piers (CP level).

Figures 5 and 6 show the response of the bridge model due to New Zealand
earthquake. The acceleration and displacement responses of the bridge are measured
during the 8 s at the point where S1C and S2C sensors are located. The damage
level occurred after 4.70 s. This level consists of IO level (1st index), LS level (2nd

index) and CP level (3rd index) at 4.70, 6.20, and 7.10 s respectively. The time before
4.70 s is categorized a safe level (zero index). The maximum acceleration values of
bridge response are 1.57 m/s2 at S1C sensor and 3.21 m/s2 at S2C sensor as shown
in Fig. 5.

Fig. 4 Damage location of bridge model due to the New Zealand excitation earthquake
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Fig. 5 The acceleration response of bridge model due to the excitation of New Zealand earthquake
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Fig. 6 The displacement response of bridge model due to the excitation of New Zealand earthquake

The maximum displacement value at S1C sensor is 0.0014 m whereas at S2C is
0.00457 m as shown in Fig. 6.

The study used two hidden layers to find the best result for prediction of bridge
condition. The architecture model for 2 hidden layers has 17 neurons for input layer,
17 neurons for 1st hidden and 17 neurons for 2nd hidden layer and 4 neurons for
output layer. The topology of neurons can be written as 17-17-17-4. The 17 neurons
of input layer consist of 1 neuron for time domain, 8 neurons each for acceleration
and displacement data domain. At the same time 4 neurons of output layer consist
of the bridge damage levels which are categorized into 4 indexes. The indexes are 0
(zero) for safety level (S), 1 (one) for IO level, 2 (two) for LS level and 3 (three) for
CP level.

The example of the input data Neural Networks from two sensors due to New
Zealand earthquake is shown in Table 1. This data comes from Figs. 5 and 6. The
ACC1 and ACC2 denote acceleration data domain for S1C and S2C sensors, whereas
DISPL1 and DISPL2 denote displacement data domain for S1C and S2C sensor.
The total data in Table 1 is 170 consist of the safety level has 159 data for time of
occurrence 7.90 s, the IO level has 5 data for time of occurrence 2.0 s, the LS level has
2 data for time occurrence 0.05 s, and the CP level has 3 data for time of occurrence
0.15 s. The total numbers of input and output data are 5,891, which are obtained from
six earthquakes excitation.
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Table 1 The example of input data S1C and S2C sensors due to New Zealand earthquake

Data Input Output
Time S1C S2C

ACC1 DISPL1 ACC2 DISPL2

1 0 0 2.11E−02 0.00E+00 −9.77E−02 S = 0
2 0.05 1.23E−04 2.13E−02 −4.95E−04 −9.71E−02 S = 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

160 7.95 −1.29514 −1.72 −2.29747 −10.31 IO = 1
161 8 −4.73E−01 −3.39E+00 −1.75E−01 −1.70E+01 IO = 1
162 8.05 1.77E+00 −4.75E+00 3.01E+00 −2.35E+01 IO = 1
163 8.1 3.81E−01 −2.98E+00 −3.32E+01 −2.65E+01 IO = 1
164 8.15 −8.37E−01 −2.12E+00 2.67E+01 −4.57E+01 IO = 1
165 8.2 4.46E−01 −2.78E+00 −1.99E+01 −3.22E+01 LS = 2
166 8.25 −2.82E−01 −2.66E+00 1.43E+01 −4.05E+01 LS = 2
167 8.3 −1.70E−01 −2.67E+00 −9.72E+00 −3.31E+01 CP = 3
168 8.35 7.63E−01 −3.34E+00 6.85E+00 −3.68E+01 CP = 3
169 8.4 −4.05E+00 −2.62E+00 −2.80E+00 −3.14E+01 CP = 3
170 8.45 −6.48E+05 2.55E+01 −8.78E+01 −2.73E+01 CP = 3

The Neural Networks in the study used 70 % data for training, 15 % data for testing
and 15 % data for validation process. The parameters to indicate the end of training are
the mean square error (MSE), maximum of epochs and learning rate (Lr). The MSE
with 0.001 performance goal has been used in the networks, whereas the maximum
number of epoch used is 50,000, and learning rate used is 0.1. The networks have
been examined by the computer with specification Intel Core i5-2410M, the power
of processor is 2.30 GHz with turbo boost up to 2.90 GHz and memory 4 GB.

The MSE of Neural Network models based on acceleration data domain with
two hidden layers is as in Fig. 7. The figure illustrates that all MSE models have the
same trend after 20,000 iterations. The MSE values of testing process are higher than
other MSE values. However, overall the error on all processes decreases along the
iterations. The error due the testing process is not used during the training process,
but it is used to compare with the different models.

Similar to the MSE of acceleration data domain, the MSE of displacement is also
shown the same trend after 20,000 iterations. Figure 8 shows the MSE of the model
based on displacement data domain for two hidden layers. The MSE of validation has
the fluctuation along the iterations before 15,000 epochs. The fluctuation describes
the networks have not been convergent yet if the runtime is less than 20,000 epochs.

The result indicates the architectures model for 2 hidden layers with more than
20,000 epochs can be accepted and used for predict the damage level based on the
acceleration and displacement data domain.

The best performance of MSE value is the smallest of MSE, because it means the
smallest of the error occurred in the calculation. However the best regression value is
the highest value which is closes to 1. The regression with value close to 1 defines the
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Fig. 7 The means square error of neural network model for 2 hidden layer of acceleration domain
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Fig. 8 The means square error of neural network model for 2 hidden layer of displacement domain

prediction value almost 100 % close to the actual one. The best performance of CPU
time is defined as the shortest time to process the calculation in central processing
unit (CPU). The CPU time is measured in seconds. The CPU time is dependent on
the CPU’s computational power and specification of the computer.

Table 2 shows the comparison of the acceleration and displacement data domain.
The average of regressions (R-mean) for acceleration data domain is above 0.85 %
whereas the Mean Square Error (MSE) is lower than 1 %. At the same time, the best
of MSE and R-mean value of acceleration data domain are 0.0056 and 0.88689 at
50,000 epochs, whereas the best of MSE and R-mean value for displacement data
domain are 0.0512 and 0.83001 at 50,000 epochs. The results shows acceleration
data domain can produce higher R-mean values and smaller MSE rather than the
displacement data domain for the bridge model which has 8 installed sensors.

The result shows that the Neural Networks model with 2 hidden layers is suitable
for the prediction of damage level in bridges seismic monitoring system. Therefore
the method can be applied to warn the bridge owner to evaluate the bridge condition
early.
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Table 2 Comparison of acceleration and displacement domain

Epochs Acceleration Displacement
MSE mean R Mean CPU time MSE mean R Mean CPU time

5,000 0.0111 0.8532 357.4525 0.0565 0.81091 378.0502
6,000 0.00961 0.8543 387.2341 0.0555 0.81619 421.5607
10,000 0.00897 0.8566 405.1233 0.0546 0.81876 561.2712
15,000 0.00782 0.8589 587.8143 0.0525 0.8278 871.2349
25,000 0.00627 0.8678 778.4599 0.0522 0.82921 983.8231
50,000 0.0056 0.88689 1,298.3425 0.0512 0.83001 1,330.8237

5 Early-Warning System

The bridge monitoring system in the study has several components to support the
main function which includes data acquisition module, intelligent engine module,
alert system module, and monitoring module. The modules use the VB.NET which
is provided in two versions involving local and remote monitoring from server. The
local monitoring is located in the bridges whereas the remote monitoring accesses the
data from any places via internet. HTTP server is utilized to provide the remote data
that has a script converting acceleration data to HTML format. The testing using
dummy data indicates that the developed intelligent monitoring could perform its

Sensors location

Earthquake load

Data Acquisition

Local and 
remote server

Operator 

Internet connection 

Mobile devices

Bridge authorities/users  

Fig. 9 The bridge monitoring system is developed in this study
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functions including monitoring, predicting, and alerting. The monitoring system in
the study is illustrated in Fig. 9.

The three steps of monitoring system are adopted from previous research [12].
First step is designing Neural Networks architecture including simulating the bridge
damage level due to the earthquakes, training and testing neural, and obtaining the
initial weights. The second step is designing and developing the intelligent monitor-
ing software using VB.NET, namely SEER Monalisa. The last step is designing and
developing the alert system. The early warning system is embedded in the SEER
Monalisa software which is developed by Structural Earthquake Engineering Re-
search at Universiti Teknologi Malaysia [13].

The software scopes are the data inputs from sensors such as accelerometers and
strain gauges, feeding forward the inputs Neural Networks, predicting the output as
bridges damage level and providing the alert warning as shown in Fig. 10.

The alerts are divided into four format namely the alert bars which are shown in
different color (S: Green, IO: Yellow, LS: Orange, and CP: Red), alert sound/alarm,
and alert-mail sent to the user. The software has a main function prediction of damage
level when an earth quake occurred. After the prediction output indicated either IO,
LS, or CP, the alert system will then notify the user that the condition of the bridge
is not secure.

Fig. 10 Early warning system in the SEER-Monalisa bridge monitoring software (colour figure
online)
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6 Conclusion

The bridge health system used several sensors to detect the behavior of a bridge
such as bridge deformation and damage. The sensors connected to the data logger
and subsequently sent the information data such as displacement and acceleration to
the server. The data is used as input by Neural Networks within the server system.
The architecture of neural network method in this study is comprised of two hidden
layers.

The Neural Network model which is based on acceleration and displacement
data domain with two hidden layers, illustrated that all MSE models have the same
trend after 20,000 iterations. The comparison of acceleration and displacement data
domain for two hidden layers’ model has been concluded based on MSE mean
value, regression mean value and CPU time of the network model. Both comparisons
showed that the MSE mean value decreased as the epoch increased.

Most bridge monitoring systems use the accelerometer sensors to measure the
acceleration of bridge response, because the accelerometer sensor is simpler to install
in the field. Furthermore, the acceleration from accelerometer sensors can be modified
directly to conduct the displacement value before being entered into the Neural
Networks system server. Consequently, the monitoring system is recommended to be
used in the Neural Networks with two hidden layers based on displacement domain.

The implementation of an early-warning system in the intelligent Neural Network
method for the bridge seismic monitoring system can help the bridge authorities to
predict the stability and health condition of the bridge structure at any given time.
The software is needed in order to disseminate the bridge health information to the
public because it has a main function prediction of damage level when an earthquake
occurred.
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