

## Nonlinear Finite Element Analysis of Reinforced Concrete Beams Strengthened in Shear with Embedded Steel Bars

Presented by: Kagan Sogut

Co-Authors: Baisali Dutta, Dr Samir Dirar, Dr Amar Nath Nayak, Dr Bharadwaj Nanda, Dr Marios Theofanous and Dr Asaad Faramarzi



# Content



AC IC

- Background
- Research Questions
- Finite Element Modeling
- Results

etComposites

Summary



### Background

VetComposites

Shear Key Failure

Abutment



AC IC

China Earthquake Reconnaissance Report: Performance of Transportation Structures During the May 12, 2008, M7.9 Wenchuan Earthquake

Shear Failure

## **Background: Shear Strengthening of RC beams**







etComposites

Source: https://www.horseen.com/project/strengthening-rehabilitation-rc-beam-column?page=3



(a)EB unidirectional FRP sheets



(c)EB laminated FRP sections



(b)EB bi-directional FRP sheets



(d)NSM FRP reinforcement



## Background

### Deep Embedment / Embedded Through-Section Technique



VEER SURENDRA SALUNIVERSITY OF TECHNOLOGY, ODBHA, BURKA DE CARACTERISTY DE CARACTERIST

ACIC

- ✓ Easier to apply
- ✓ Less epoxy consumption
- ✓ Higher effectiveness



### **Research Questions**

Composites



- Shear behavior of continuous RC beams strengthened with DE/ETS technique is still unclear.
- The effect of concrete compressive strength on the behavior of DE/ETS strengthened continuous RC beams and simply supported RC beams is not quantified.





• Geometry :

Composites

- Two-dimensional, four-node, plane stress rectangular elements were used to model the concrete, loading plate and support plate.



 The steel reinforcement; comprising longitudinal reinforcement, shear links and DE/ETS bars; was modelled using two-node truss elements.

Plane Stress Rectangular Element

**Truss Bar Element** 

• Material :

etComposites



AC IC



Popovics high strength pre-peak and post-peak concrete compression response

### **Compression Softening**



Vecchio 1992-B (e1/e0-Form) Compression softening model

### **Tension Softening**



CEB-FIP tension softening curve (CEB-FIP, 1990)



9<sup>th</sup> International Conference on Advanced Composites in Construction (ACIC 2019)



AC





AC



NetComposites

### Finite Element Modeling:Model Validation





•The first set comprised the two continuous RC beams CON and S150 tested by Raicic et al. (2017)

•CON as control beam whereas S150 is strengthened with 6 mm diameter DE/ETS steel bars.

•Both beams had two 20 mm diameter tension and compression reinforcement together with 4 mm diameter shear links spaced at 150 mm.



#### Finite Element Modeling:Model Validation

Composites



•The second set included the four simply supported RC beams 2S-Ref, 2S-S180-90,4S-Ref and 4S-S180-90 tested by Breveglieri et al.(2015)

•The difference between the two series is that the beams in series 2S had 6 mm diameter shear links spaced at 300 mm, corresponding to a shear reinforcement ratio of 0.10% whereas the beams in series 4S had 6 mm diameter shear links spaced at 180 mm, corresponding to a shear reinforcement ratio of 0.17%.

• 2S-Ref and 4S-Ref are unstrengthened control beams whereas 2SS180-90 and 4S-S180-90 are strengthened with 10 mm diameter DE/ETS steel bars.



Control Continuous T Beam

etComposites



Continuous T beam Strengthened with Steel bar





Simply supported T beam (2S – Series)

etComposites 9<sup>th</sup> International Conference on Advanced Composites in Construction (ACIC 2019)

AC IC

etComposites





Simply supported T beam (4S – Series)



AC IC

| Specimen   | Load at<br>Failure (KN)<br>Experimental | Load at<br>Failure (KN)<br>NLFE | NLFE/Experimental | Deflection at<br>failure load<br>[mm]<br>Experimental | Deflection<br>at failure<br>load [mm]<br>NLFE | NLFE/Experimental |
|------------|-----------------------------------------|---------------------------------|-------------------|-------------------------------------------------------|-----------------------------------------------|-------------------|
| CON        | 173                                     | 169.32                          | 0.98              | 5.7                                                   | 5.637                                         | 0.98              |
| S 150      | 278                                     | 258.96                          | 0.93              | 10.7                                                  | 8.5                                           | 0.79              |
| 2S-Ref     | 242.1                                   | 263.626                         | 1.08              | 4.70                                                  | 4.204                                         | 0.89              |
| 2S-S180-90 | 406.8                                   | 406.428                         | 0.99              | 8.27                                                  | 6.205                                         | 0.75              |
| 4S-Ref     | 353.8                                   | 338.036                         | 0.95              | 7.35                                                  | 5.301                                         | 0.72              |
| 4S-S180-90 | 413.2                                   | 450.569                         | 1.09              | 6.32                                                  | 6.607                                         | 1.04              |

1.003 with a standard deviation of 0.061. (Load) 0.861 with a standard deviation of 0.118. (Deflection)

etComposites

### **Results : Failure Mode**



AC IC

Crack Patterns of Continuous T Beam





### **Results : Failure Mode**

NetComposites



Crack Patterns of Simply supported T Beam (2S series)





### **Results : Failure Mode**

NetComposites



Crack Patterns of Simply supported T Beam (4S series)



### **Results: Parametric Study**



### **Results: Parametric Study**

etComposites



• Effect of beam type and concrete compressive strength :

Concrete cube compressive strength ( $f_{cu}$ ) values of 40, 50 and 60 MPa were considered.



# Summary



- A two-dimensional nonlinear FE models for DE/ETS-strengthened simply supported and continuous RC beams were validated using experimental results from the published literature.
- A parametric study was carried out to investigate the effect of beam type and concrete compressive strength on the predicted load carrying capacity.
- The load carrying capacities of the strengthened continuous beams were 20-22% lower than those of the corresponding simply supported beams.
- The predicted load carrying capacities of both beam types increased by 12-15% with the increase in concrete cube compressive strength from 40 to 60 MPa.

9<sup>th</sup> International Conference on Advanced Composites in Construction (ACIC 2019)

Composites



AC IC

# Thank You

Any questions?

