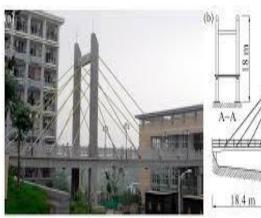


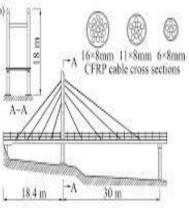
Biskra University Algeria

ADVANCED COMPOSITES IN CONSTRUCTION ACIC 2019, 3rd to 5th September, Birmingham United Kingdom

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES BY ADVANCED FINITE ELEMENTS

Djamal HAMADI, Meryem HAMADI, Abdallah ZATAR and Toufik MAALEM LARGHYDE Laboratory, Civil Engineering and Hydraulics Department, Biskra University, B.P 145.RP. 07000,Biskra, Algeria, E –mails: d.hamadi@univ-biskra.dz, djamalhamadi15@gmail.com


5 September 2019

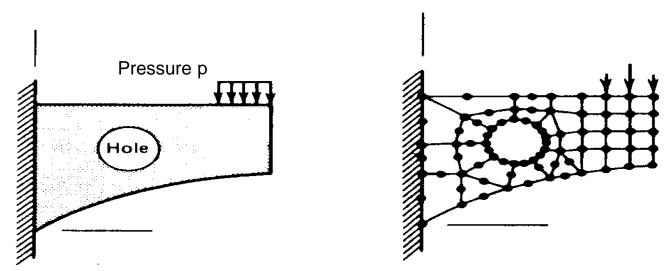

Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

Recommendation & references

Engineering Structures

Engineerin	9
Structures	


Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Recommendation & references

Modelling Structures

Various considerations:

- Type of elements Size of elements Location of nodes
- Local features in the structure (Stress concentrations)
- Meshing of the body Material properties External loads B.C.

A plan structure of arbitrary shape - A possible finite element model of the structure

Different Formulations (FEM) .

 Displacement model - Stress model - Mixed model -Hybrid model, Strain Based Approach

Advantageous of S.B.A.

S.B.A Direct interpolation------ Better displacements (Integration) Displacement Approach ------- Derivation. Easy satisfaction of the main two convergence criteria (constant strains and rigid body movement).

Possibility of enriching displacements field by terms of high order without the introduction of intermediate nodes or of supplementary degrees of freedom (**allowing so to treat the problem of locking**). Modelling Structures Description Strain Based <u>A</u>pproach Finite Elements (B.S.A) Applications

Conclusion

Recommendation & references

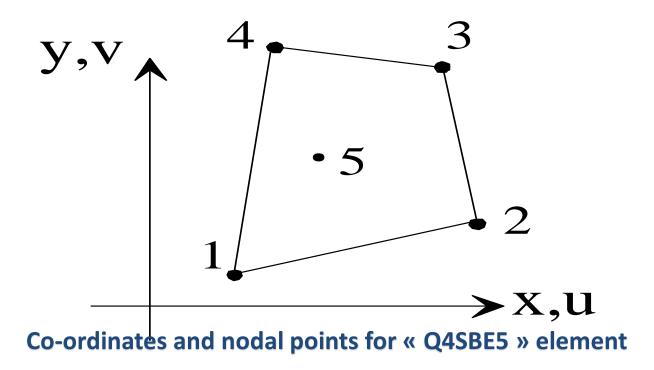
Description Of The Strain Based Approach

Example:

Procedure for the development of displacement field (S.B.A) Rectangular plane elasticity element

$$\begin{split} & \varepsilon_{x} = U_{,x} = (\partial U / \partial x) \\ & \varepsilon_{y} = V_{,y} = (\partial V / \partial y) \\ & \gamma_{xy} = U_{,y} + V_{,x} = (\partial U / \partial y) + (\partial V / \partial x) \end{split}$$

Final displacement functions:


U =
$$a_1 - a_3 y + a_4 x + a_5 xy - a_7 \frac{y^2}{2} + a_8 \frac{y}{2}$$

V = $a_2 + a_3 x + a_6 y - a_5 \frac{x^2}{2} + a_7 xy + a_8 \frac{x}{2}$

Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

Recommendation & references

Finite elements Based on the Strain Approach Membrane elements Quadrilateral Membrane Element Q4SBE5 (Hamadi et al. 2016)

Engineering
StructuresModelling
Strain Based
ApproachFinite Elements
(B.S.A)
ApplicationsRecommendation
&
ConclusionEngineering
(B.S.A)
ApproachModelling
(B.S.A)
ApplicationsRecommendation
&
references

Displacement fields

$$U = a_1 - a_3 y + a_4 x + a_5 x y - a_7 y^2 (R+1)/2 + a_8 y/2 + a_9 (x^2 - Hy^2)/2$$

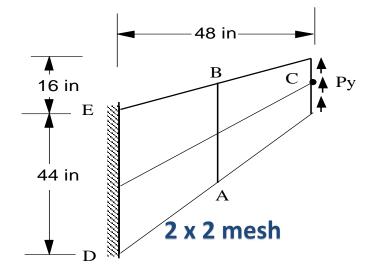
$$V = a_2 + a_3 x - a_5 x^2 (R+1)/2 + a_6 y + a_7 x y + a_8 x/2 + a_{10} (y^2 - Hx^2)/2$$

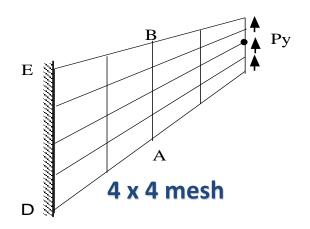
$$H = \frac{2}{(1-\nu)} \qquad R = \frac{2\nu}{(1-\nu)}$$

05/09/2019

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES BY ADVANCED FINITE ELEMENTS

Engineering Structures


Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications


Conclusion

Recommendation & references

Application 1: Tapered Panel under End shear

This problem is proposed by Cook as a test for the accuracy of quadrilateral elements and Bergan et al.

Py = 1 pi (uniformly distributed load)Boundary conditions:E = 1 psi, v = 1/3 Thickness t =1 inU = V = 0 (DE)Tapered panel subjected to end shear; data and meshes

Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

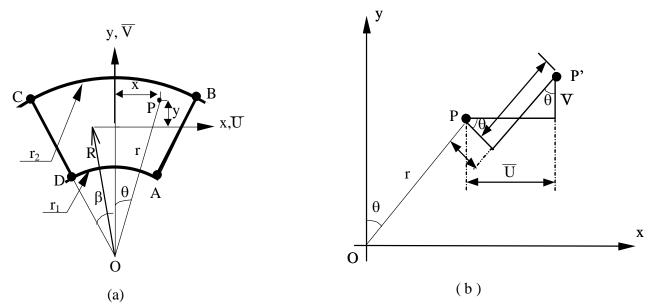
Recommendation & references

Normalised results for tapered panel under end shear

_	2 x 2 mesh			4 x 4 mesh		
Element	V _c	σ _{maxA}	σ _{minB}	V _c	σ_{maxA}	σ _{minB}
Q4	0,496	0,437	0,533	0,766	0,756	0,719
AQ	0,890	0,780	0,900	0,965	0,936	1,010
Allman	0,848	0,771	0,856	0,953	0,956	0,997
MAQ	0,890	0,779	0,886	0,965	0,941	0,967
QR4b	0,941	0,879	1,059	0,980	0,990	0,997
Bergan	0,852	0,720	0,898	0,938	0,902	0,849
Q4SBE5	1,0652	1,508	1,171	1,011	1,004	0,992
32 x 32 mesh Cook	1,000 (23,90)	1,000 (0,236)	1,000 (-0,201)	1,000 (23,90)	1,000 (0,236)	1,000 (-0,201)

Comments:

The results obtained for the deflection and principal stresses for the refined mesh (4x4) are very good compared to an accurate solution given by Bergan and Felippa using a (32x32) mesh (error 1 %).


Engineering
StructuresModelling
StructuresDescriptionStructuresStructuresApproach

Finite Elements (B.S.A) Applications

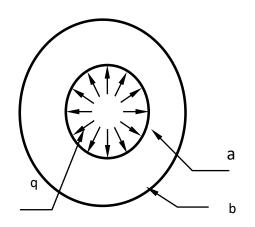
Conclusion

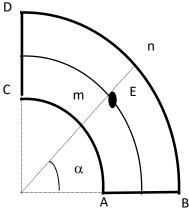
Recommendation & references

Sector Element SBMS-BH (Polar Coordinates)

Coordinates systems and displacements for the sector element Description and displacement field

$$U = a_1 - a_3 y + a_4 x + a_5 x y - 0.5 a_7 y^2 + 0.5 a_8 y + 0.5 a_9 x^2$$


 $V = a_2 + a_3 x - 0.5 a_5 x^2 + a_6 y + a_7 xy + 0.5 a_8 x + 0.5 a_{10} y^2$


Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion Rec

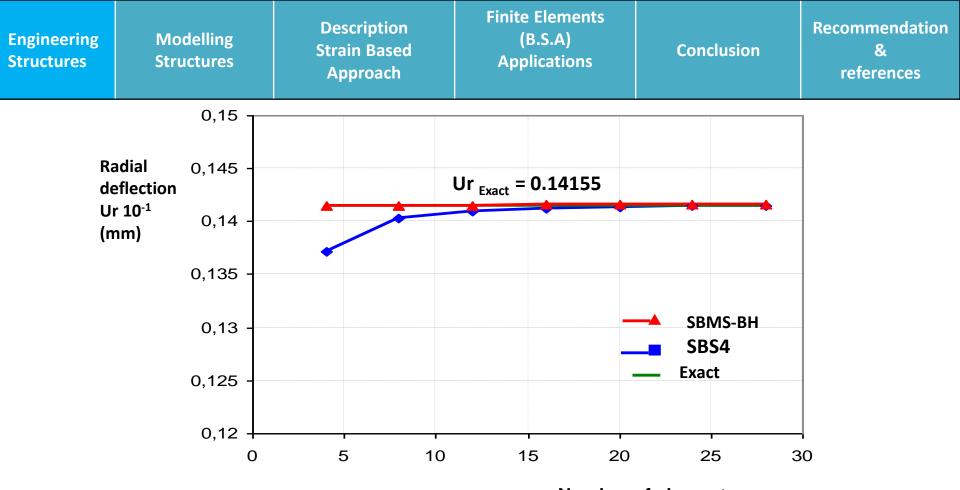
Recommendation & references

Application 2: Thick cylinder under internal pressure

Thick cylinder under internal pressure

Geometrical and material properties:ConInternal radiusa = 20 mmThickness t = 1 mmABExternal radiusb = 40 mmPoisson ratio v = 0,3InternalYoung's modulus $E = 2 \cdot 10^5 \text{ MPa}$ (Steel),q = x/4

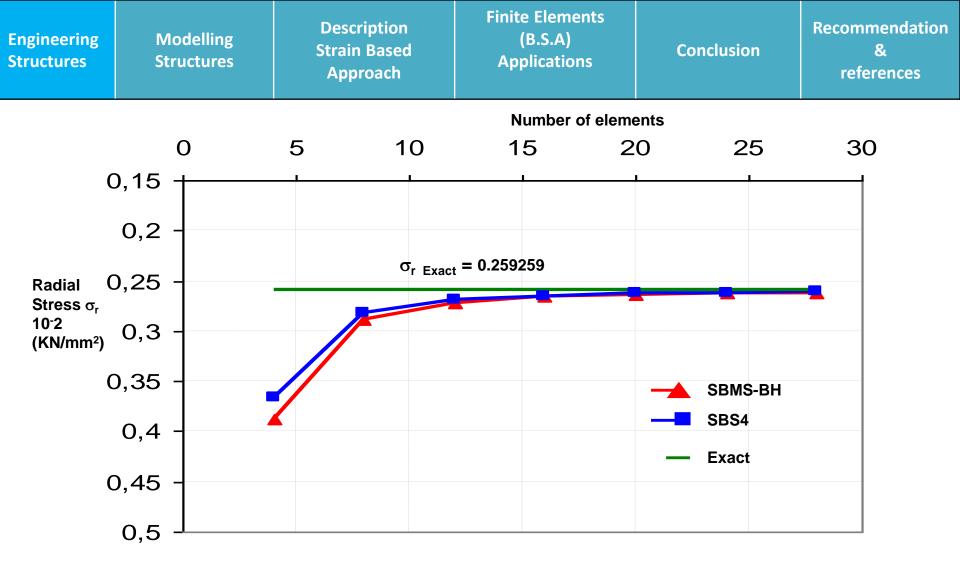
Condition of symmetry: AB and CD V_{\Box} = 0 Internal pressure q = 0,1 KN/mm²


Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

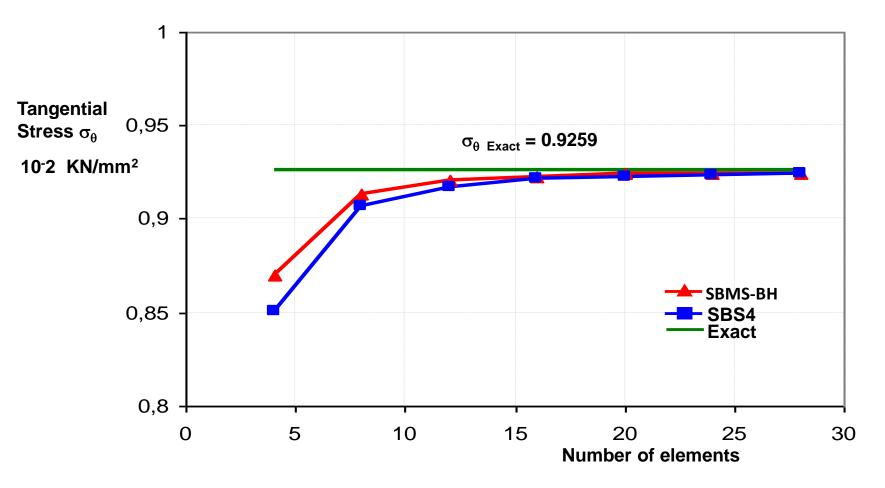
Conclusion

Recommendation & references

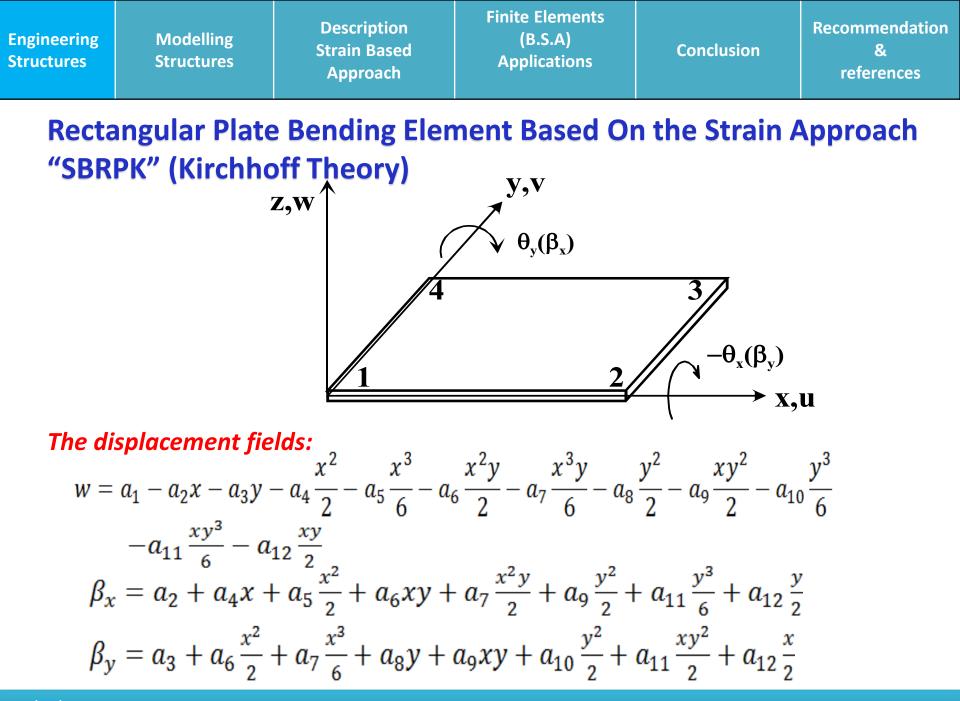
The results obtained at point E (r = 30 mm) : Ur: Radial deflections Ur, The stresses and ,


$$U_{r} = \frac{(1+\nu)}{E(b^{2}-a^{2})} \left[(1-2\nu)(a^{2}P_{i}-b^{2}P_{e})r + \frac{a^{2}b^{2}}{r}(P_{i}-P_{e}) \right]$$
$$V_{\theta} = 0$$
$$\sigma_{r} = \frac{1}{(b^{2}-a^{2})} \left[a^{2}P_{i} - b^{2}P_{e} + \frac{a^{2}b^{2}}{r^{2}}(P_{e}-P_{i}) \right]$$
$$\sigma_{\theta} = \frac{1}{(b^{2}-a^{2})} \left[a^{2}P_{i} - b^{2}P_{e} - \frac{a^{2}b^{2}}{r^{2}}(P_{e}-P_{i}) \right]$$

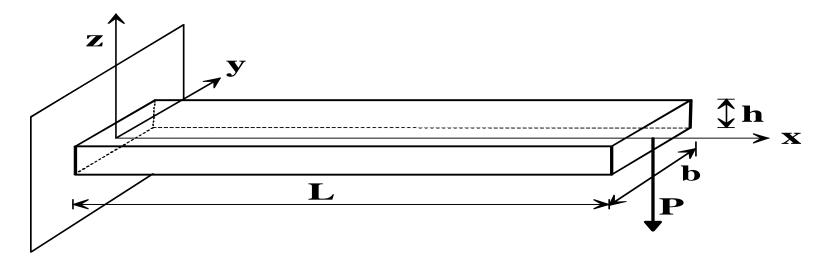
Number of elements Convergence curve for the radial deflection U_r at point E (r =30 mm)


Comments:

High degree of accuracy obtained with element SBMS-BH (the error accounts = 0.063 % of the exact solution with 2x2 meshes only).



Convergence curve for the radial Stress σ_r at point E (r = 30 mm



Convergence curve for the tangential Stress σ_{θ} at point E (r = 30 mm)

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

Application 3: Cantilever plate under point load at the free end

Geometrical and material proprieties are: Mesh division is 1×10 L=10, b=1.0. P=0.1., E=1.2x10⁶ Poisson's ratio= v=0.0

Engineerii	٦Į
Structures	5

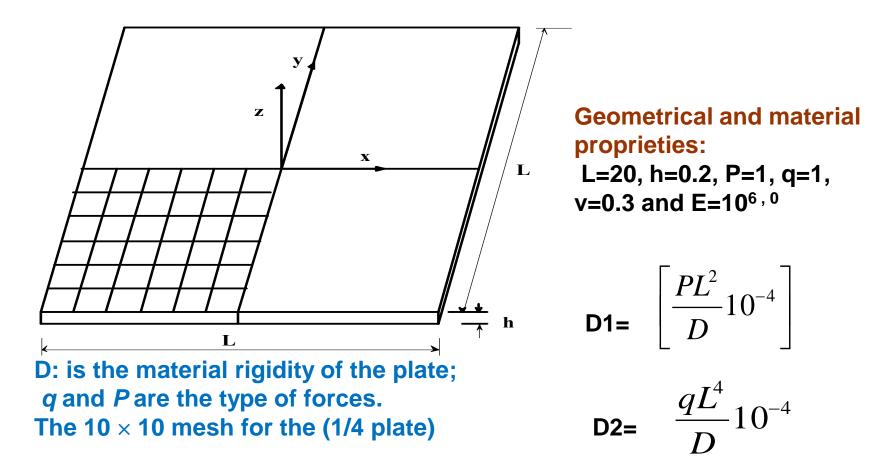
Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

Recommendation & references

Vertical displacement W_{max} with the ratio (L / h)

L/h	W _{max} (Normalized Values)								
	1	2	3	4	5	10	100		
ACM	0.626	0.864	0.943	0.972	0.972	1.042	1.003		
R4	0.994	0.967	0.9583	0.954	0.906	0.727	0.023		
SBH8	0.994	1.000	1.000	1.000	1.000	1.000	0.997		
SBRP	0.994	1.000	1.000	1.000	1.000	1.000	0.997		
SBRPS	0.998	0.987	0.991	0.995	0.983	1.006	1.000		
SBRPK	0.624	0.858	0.937	0.968	0.967	1.009	1.000		
Analytical Solution	5.33E-07	3.10E-06	9.60E-06	2.20E-05	4.30E-05	3.30E-04	0.333		


Comments:

-The results obtained with **SBRPK** element be in good agreement with the analytical solution for L/h =100 (very thin plate).

- For L/h<10, the present element is very accurate, although it doesn't take in account the shear transverse effect.

Engineering
StructuresModelling
Strain Based
ApproachFinite Elements
(B.S.A)
ApplicationsRecommendation
&
references

Application 4: Simply supported and clamped Square Plate under point and distributed load), Aspect ratios L/h=100.

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

Case A /Simply supported plate with central point load

Mesh	W _{max} (Normalized value)					
	ACM	SBH8	SBRP	SBRPS	SBRPK	
2x2	0.934	0.220	0.157	0.147	0.800	
4x4	0.980	0.7381	0.728	0.721	0.936	
8x8	0.993	0.962	0.962	0.877	0.980	
10x10	0.995	0.980	0.980	1.016	0.986	
Analytic x D1	116.0 (1.00)					

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

Case B / Clamped plate with central point load

Mesh		W _{max} (Normalized value)					
	ACM	SBH8	SBRP	SBRPS	SBRPK		
2x2	0.904	0.019	0.019	0.027	0.904		
4x4	0.963	0.432	0.429	0.449	0.943		
8x8	0.987	0.914	0.913	0.873	0.963		
10x10	0.990	0.955	0.955	0.958	0.974		
Analytic x D ₁	56.0 (1.00)						

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

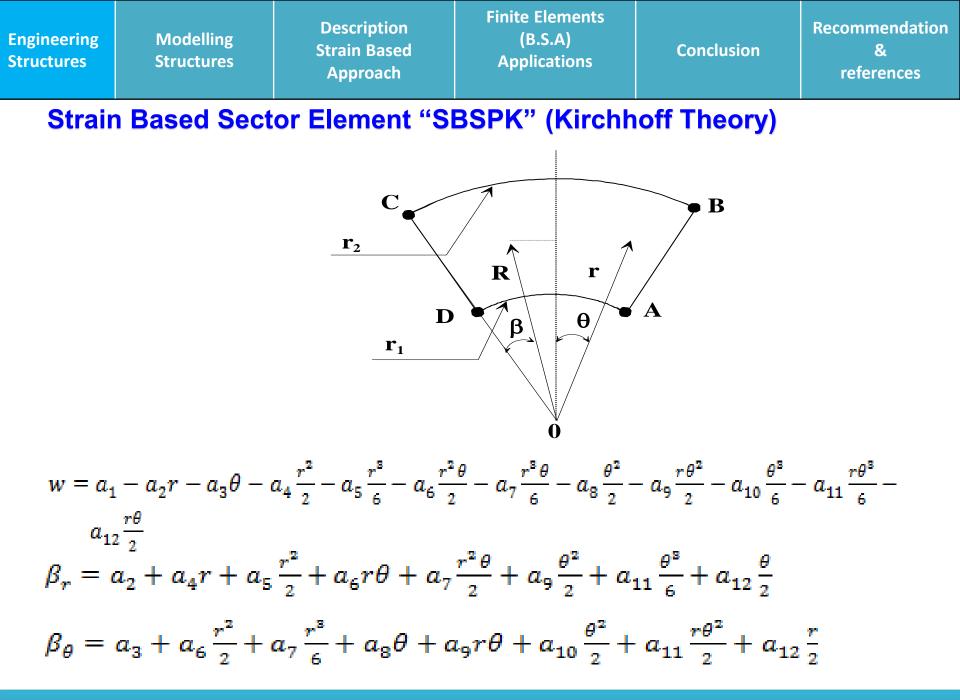
Case C / Simply supported plate with distributed load

Mesh	W _{max} (Normalized value)					
	ACM	SBH8	SBRP	SBRPK		
2x2	0.933	0.217	0.165	0.856		
4x4	0.983	0.768	0.766	0.970		
8x8	0.995	0.975	0.975	0.993		
10x10	0.997	0.988	0.988	0.995		
Analytic x D ₂	40.62 (1.00)					

Engineering
StructuresModelling
StructuresDescriptionFinite
(E
Strain Based
Approach

Finite Elements (B.S.A) Applications

Conclusion

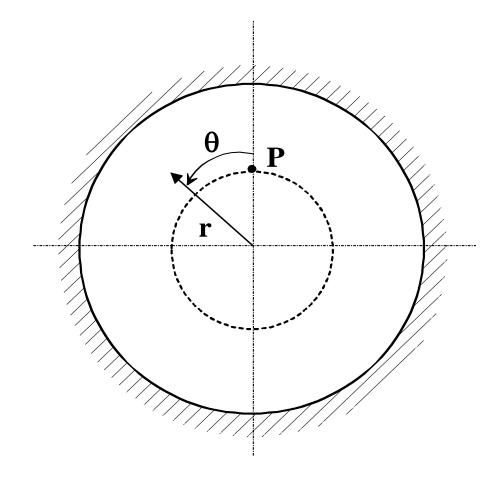

Recommendation & references

Cased D / Clamped plate with distributed load

Mesh	W _{max} (Normalized value)				
	ACM	SBH8	SBRP	SBRPK	
2x2	0.886	0.021	0.0214	0.825	
4x4	0.965	0.446	0.443	0.886	
8x8	0.987	0.936	0.935	0.964	
10x10	0.990	0.972	0.972	0.976	
Analytic x D ₂	12.6 (1.00)				

Comments:

The rate convergence of the developed element SBRPK is very high for all cases compared to the same strain based elements.
The developed element has successfully handled the bending thin plate.



Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

Recommendation & references

Application 5: Circular plate subjected to a point load

Geometrical and material proprieties: Clamped plate around the outer boundary (R = a), Concentrated load P = 0.1N at r = b h = 0,2 mm , R= 100 mm, r =50 mm, E=2x10⁵ , v = 0,3. Engineering
StructuresModelling
Strain Based
ApproachFinite Elements
(B.S.A)
ApplicationsRecommendation
&
Conclusion

Lateral displacement Wmax for circular plate subjected to a point load

Mesh	Wmax	
	(SBSPK)	
1x1	0.00114	
2x2	0.00180	
3x3	0.00471	
4x4	0.00837	
4x5	0.01133	
Analytical solution	0.01119	

Convergence error of the lateral displacement under the applied point load

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

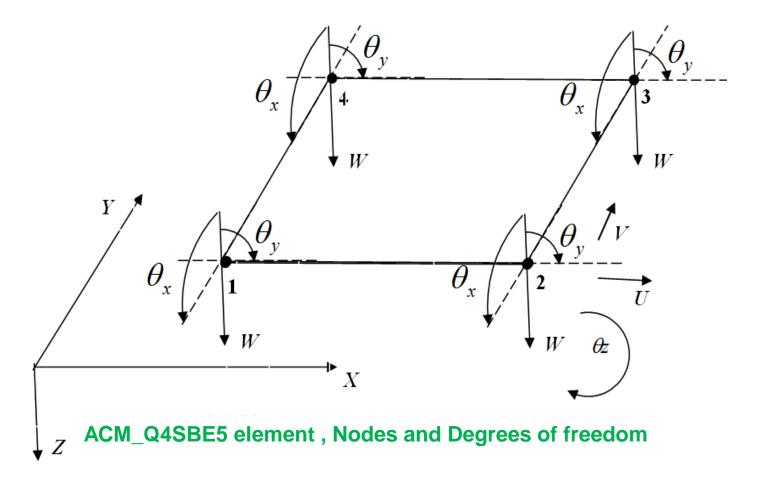
Convergence error of the lateral displacement Under the applied point load

Element	Mesh	Number of degrees of freedom	Lateral displacement	Analytical solution	Error
SBSPK	4x5	30	0.01133	0.01119	1.25
Olson's element	20x8	523	0.01099	0.01119	1.78

-Comments

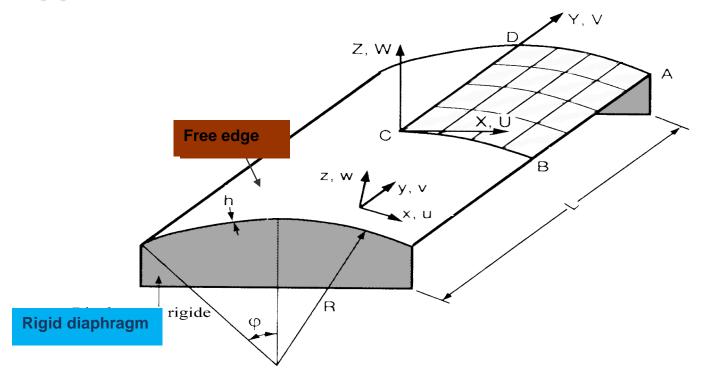
The Strain-based element "SBSPK" is proposed for the analysis of circular thin plate bending problems (with opening)

- Only small numbers of elements, good results are obtained with small numbers of elements

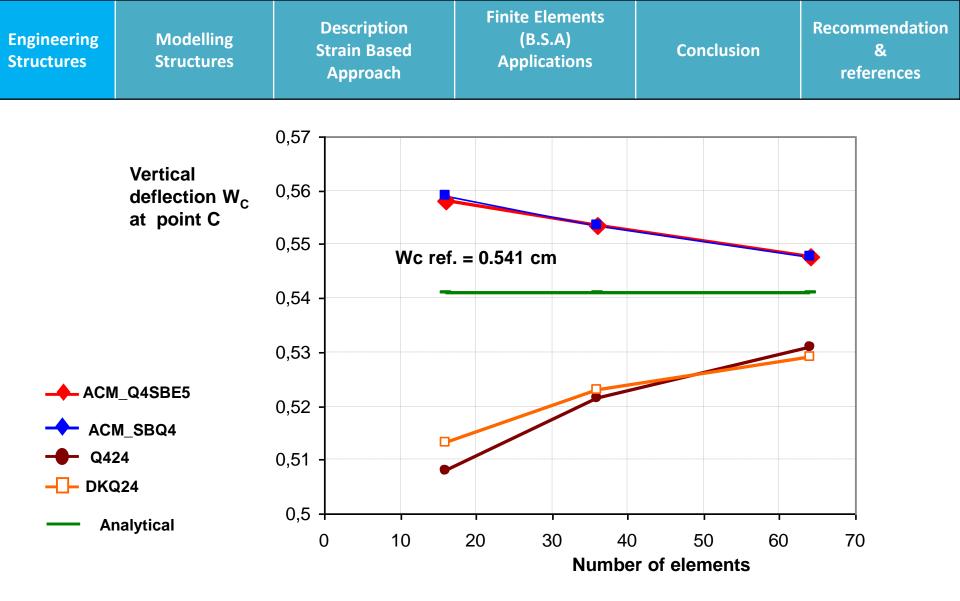

-These make the model very suitable for several civil engineering applications.

Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion


Recommendation & references

Flat Shell Element ACM_Q4SBE5



Engineering
StructuresModelling
StructuresDescription
Strain Based
ApproachFinite Elements
(B.S.A)
ApplicationsRecommendation
&
references

Application 6: Scordelis-Lo Roof

Data: L = 6 m ; R = 3 m ; h = 0,03 m ; $\varphi = 40^{\circ}$, E = 3 x 10¹⁰ Pa ; v = 0 ; f_z = -0,625 x 10⁴ Pa Boundary conditions: Symmetry conditions: U = W = $\theta_{Y} = 0$ for AD U = $\theta_{Y} = \theta_{Z} = 0$ for CD, V = $\theta_{X} = \theta_{Z} = 0$ for CB Reference value (Deep Shell Theory): Analytical solution (Shallow Shell theory): W_B = -3,61 cm ; W_C = 0,541 cm , W_B = -3,703 cm ; W_C = 0,525 cm U_B = -1,965 cm ; V_A = -0,1513 cm

Convergence curve for the deflection Wc at point C for ACM_Q4SBE5 and other quadrilateral shell elements

05/09/2019

NUMERICAL ANALYSIS OF ENGINEERING STRUCTURES BY ADVANCED FINITE ELEMENTS

Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Conclusion

The proposed finite elements based on the strain approach Q4SBE5, SBMS-BH, SBRPK, SBSPK and ACM_Q4SBE5:

- Have the advantageous of being simple in form.
- Have only the essential degrees of freedom.

- Furthermore they can be used for the analysis of plane elasticity problems, plate bending and thin shell structures with good efficiency and fast convergence rate compared to reference solution and other exiting finite elements. Modelling Structures Description Strain Based Approach Finite Elements (B.S.A) Applications

Recommendation for further work

- It is very useful to extend the formulated elements to:
- Application to different materials in engineering

structures (composite materials, fibred reinforced

polymer (FRP) composite materials etc....

- N.L.A behaviour
- Dynamics behaviour and thermal effect
- Inclusion in FEAP, ABAQUS etc..

Engineering Structures	Modelling Structures	Description Strain Based Approach	Finite Elements (B.S.A) Applications	Conclusion	Recommendation & references
---------------------------	-------------------------	---	--	------------	-----------------------------------

REFERENCES

1. Zienkiewics, O.C. and Taylor, R.L., *The Finite Element Method, Vol. Solid Mechanics*.5th ed. Butterworth – Heinemann, (2000).

2. Ashwell, D.G. and Sabir, A.B., Limitations Of Certain Curved Finite Elements When Applied To Arches. *IJMS* Vol. 13, 133-139 (1971).

3. Sabir, A.B., Salhi, H.Y., A Strain Based Finite Element for General Plane Elasticity in Polar Coordinates. *Res. Mechanica* 19, 1-16 (1986).

4. Belarbi, M.T. and Maalem, T., On Improved Rectangular Finite Element For Plane Linear Elasticity Analysis, *Revue européenne des éléments finis*, 14(8), 985-997 (2005).

5. Belarbi, M.T. and Bourezane, M., On Improved Sabir Triangular Element With Drilling Rotation. *Revue Européenne de génie civil*, 9(9-10), 1151-1175 (2005).

6. Hamadi, D., *Analysis Of Structures By Non-Conforming Finite Elements*. PhD Thesis, Civil Engineering Department, Biskra University, Algeria, (2006).

7. Hamadi D., Ashraf A. and Maalem T., A New Strain-Based Finite Element For Plane Elasticity Problems. *Engineering Computations, EmeradInsight*. 33(2), 562–579 (2016)

8. Cook R.D., On The Allman Triangle And A Related Quadrilateral Element. C.S Journal, (22),1065-1067 (1986).

9. Bergan, P.G. and Felippa, C.A., A Triangular Membrane Element With Rotational Degrees Of Freedom. *CMAME*, (50), 25-69 (1985).

10. Allman D.J., A Quadrilateral Finite Element Including Vertex Rotations For Plane Elasticity [11] Analysis. *IJNME*, (26), 717-730 (1988).

11. Abderrahmani, S., Maalem T., ZATAR A. and Hamadi D., On Improved Thin Plate Bending Rectangular Finite Element Based On The Strain Approach. *International Journal of Engineering Research in Africa*, (27), 76-86 (2016).

12. Hamadi, D., Ashraf, A. and Ounis A., <u>a New Flat Shell Finite Element For The Linear Analysis Of Thin Shell</u> <u>Structures.</u> *European Journal of Computational Mechanics*, 24(6), 232-255 (2016).