Effect of Coarse Aggregates on FRP Strain Distribution in a FRP-to-Concrete Bonded Joint

Ya-Qi Li, Esmaeel Esmaeeli, Jian-Fei Chen, Wei Sha and Marios Soutsos

School of Natural and Built Environment

Queen's University Belfast

Introduction

- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design
- Test results and failure modes
- Strain distribution across the FRP width
- Conclusions

Introduction

J.L. Pan (2010)

Typical failure mode

- Introduction
- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design
- Test results and failure modes
- Strain distribution across the FRP width
- Conclusions

Theoretical bond strength models

UEEN'S

BELFAST

RSITY

Numerical FE models

Numerical FE models

Photo of a concrete sample

(Credited by Palmieri and De Lorenzis, 2014)

2D mesoscopic concrete sample 2D plane stress/strain assumption

AC IC

- Introduction
- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design
- Test results and failure modes
- Strain distribution across the FRP width
- Conclusions

Experimental test design

Test procedure

AC IC

Introduction

- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design procedure
- Test results and failure modes
- Strain distribution across the FRP width

Conclusions

Summary of the results

Test	C-1	C-2	C-3	M-1	M-2	M-3*
Failure mode	DB-SCI	DB-SCI	DB-SCI	BF	DB-SCI	DB-SCI
Peak Force (kN)	29.6	26.8	23.1	22.4	22.0	27.8
Mid-span deflection at failure (mm)	1.48	1.68	1.21	1.33	1.11	1.26

3 concrete specimens and 2 mortar specimens Debonding - shear crackinduced (DB-SCI):

Only 1 mortar specimen Block failure (BF):

Summary of the results

FRP-concrete specimens

> Introduction

- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design procedure
- Test results and failure modes
- Strain distribution across the FRP width

Conclusions

Strain analysis procedure

Strain distribution across FRP width

Strain distribution across FRP width

> Introduction

- > Shortcomings of existing theoretical bond strength models and numerical FE models
- Experimental test design procedure
- Test results and failure modes
- Strain distribution across the FRP width

Conclusions

Conclusions

The test results confirmed that the presence of coarse aggregates results in a remarkable variation (more than twice as much as that in mortar) in the FRP strain distribution across the width of the FRP.

The bond strength of FRP-to-concrete interface is significantly higher than that of FRPto-mortar interface.

Aggregates plays an important role in FRP-to-concrete bond behaviour, and the effect of coarse aggregates on the FRP-to-concrete bond behaviour should not be ignored in both theoretical models and FE simulation

Thank You

Do you have any questions?

