Creep of adhesively-bonded FRP-strengthened steel structures at elevated temperatures

Songbo Wang*, Tim Stratford and Thomas Reynolds Songbo.wang@ed.ac.uk

ACIC2019 Birmingham, UK

THE UNIVERSITY of EDINBURGH

Newcastle High Level Bridge (1849)

Strengthened in 2008

THE UNIVERSITY of EDINBURGH Institute for Infrastructure and Environment

Photo from: https://northumbrianimages.blogspot.com

Bonded fibre reinforced polymers (FRPs) are now widely used in rehabilitating and strengthening existing structures. This bonded strengthening method relies upon the **structural adhesive** to transfer the load between the FRP plate and strengthened structure.

Strengthen the Sauvie Island Bridge, USA (Mosallam et al. 2015)

A viscoelastic model is required for FRP strengthening at elevated temperatures

3 of 19

Investigates the effects of temperature-dependent viscoelastic creep behaviour on an adhesively-bonded, FRP-strengthened steel beam

1. Experiment

Experimental characterisation of the adhesive

2. FE Model

A FE model of an

FRP-strengthened

steel beam

3. Analysis

Analytical study of the effect of adhesive creep at warm temperatures

I. Glass transition behaviour

- Time/Temperature Scan
- 1 Hz, 0.05mm displacement
- 2°C/min from 25°C to 100°C
- The glass transition temperature (T_g)

II. Thermo-viscoelastic response

- Multi-frequency Scan
- 0.01 to 100 Hz (16 frequencies)
- 25° C to 135° C (interval T = 5° C)

The modulus master curve using Timetemperature superposition principle

Single cantilever configuration

- Equipment: dynamic mechanical analyser (DMA 800)
- Material: typical epoxy adhesive (Sikadur[®] 330)
- Sample size: nominally 33×7.5×1.3 mm
- Sample cure: 7 days at room temperature
- DMA configuration mode: single cantilever

Experimental Work

4.0 6.0 Storage modulus Onset $T_g = 38.0^{\circ}$ C 3.5 4.0 WLF equation Peak tan δ $T_g = 49.0^{\circ} C$ 3.0 Hand shift factors 2.0 \times **Storage Modulus (**GPa**)** 2.2 1.2 1.5 0.0 5 -2.0 log -4.0 -6.0 1.0 ·×***** 0.5 -8.0 0.0 -10.0 10 20 30 50 110 120 130 140 150 40 60 100 70 80 90 Temperature (°C)

I. Glass transition behaviour

Time-temperature superposition principle (TTSP) _{10.0}. Williams-Landel-Ferry (WLF) equation:

II.

Thermo-viscoelastic response

UNIVERS

The generalised Maxwell viscoelastic response (linear viscoelastic model) is expressed as a **Prony series** in frequency, for input into the **ABAQUS** finite element model.

$$G'(\omega) = G_0 \left[1 - \sum_{i=1}^N g_i \right] + G_0 \sum_{i=1}^N \frac{g_i \tau_i^2 \omega^2}{1 + \tau_i^2 \omega^2}$$

where $G'(\omega)$ is the frequency-dependent shear modulus, N is the number of terms in the Prony series, and ω is the angular frequency.

 $G_0 = 1292.9$ MPa determined from the T_g test.

Generalized Maxwell model

The **bulk modulus** was assumed **not** to be temperature dependent, so that the corresponding bulk modulus parameters were taken as $k_i = 0$

FE Model

FE Model

i	g_i	$ au_i(s)$	i	g_i	$ au_i(s)$
1	0.00069	4.1×10 ⁹	8	0.15106	92
2	0.00014	5.0×10^{8}	9	0.20782	12
3	0.00057	8.2×10 ⁷	10	0.30753	0.41
4	0.00062	1.9×10^{6}	11	0.11247	3.9×10 ⁻²
5	0.00293	6.4×10^4	12	0.05713	9.3×10 ⁻³
6	0.01594	6.6×10 ³	13	0.06955	1.4×10 ⁻⁴
7	0.06282	7.1×10^{2}	$\sum g_i = 0.98927$		

The Prony series parameters obtained by fitting with the master curve. The fitting is accurate enough to be used in further FE modelling, especially at low frequency (long time) range (≤ 100 Hz).

FE Model

10 of 19

In ABAQUS, the **time-dependent** viscoelasticity of the adhesive was defined by time domain Prony series with the same parameters:

$$G'(t) = G_0 \left[1 - \sum_{i=1}^N g_i \left(1 - e^{-t/\tau_i} \right) \right]$$

The **temperature-dependent** viscoelasticity was defined by the WLF equation:

$$log(\alpha_T) = \frac{-C_1(T - T_{ref})}{C_2 + (T - T_{ref})}$$

 $T_{ref} = 40 \text{ °C}, C_1 = 21.022 \text{ and } C_2 = 152.64$

The geometry and material properties of the FE strengthened beam model

- The thermo-viscoelastic constitutive model.
- Thermal expansion is **not** included in this model.
- The constant temperature and load (with F = 110kN) were applied.

- **25°C** around room temperature
- 40°C just above the Onset T_a (38°C)
- 55°C exceeds the Onset T_q (38°C)

Analytical study

ABAQUS model strain distribution

3

The **benchmark** case (no creep) is shown in green :

- Agrees with an elastic bond analysis.
- CFRP axial stress is broadly constant between the loading points and increases linearly in the shear span.
- Close to the plate end there is a local increase in slip and reduction in the axial stress in the CFRP.

3

After 1 day at 25°C:

- The plate end slip increases from 0.01mm to 0.04mm.
- The axial stresses are redistributed along the beam.
- The load-carrying capacity of the beam is **not** affected.

After 1 month at 25°C:

- The plate end slip has increased to 0.12mm.
- The CFRP stress has dropped at the centre of the beam.
- The beam has to carry a **higher** proportion of the moment.

After 1 year and 50 years at 25°C:

- The slip increases further, and the CFRP axial stress reduces.
- The steel beam must carry **more** moment, starts to **yield** under the loading points.
- Consequently the strengthening is no longer able to contribute to carrying the additional continuous loads.

Similar behaviour is seen at 40°C and 55°C, but at higher creep rates.

For example, a plate end slip of 0.17mm is seen after 50 years at 25°C, or 1 year at 40°C, or 1 day at 55°C.

This results in a reduction in the CFRP plate stress from 291MPa to 256MPa at the loading point (x = 475mm).

What's the Next Step

- □ **Real-scale** beams have longer bonded lengths and lower load demands on the CFRP.
- □ The adhesive will **continue to cure** and the glass transition temperature increase.
- Realistic temperature and load histories will be cyclic rather than steady.
- □ A linear viscoelastic model has been used, and the **validity** of the adhesive constitutive data for 50 year predictions is unproven.

Add **Differential thermal expansion** and **a joint debonding criterion** into the FE model

600

Conclusions

1) Adhesive viscoelasticity results in additional slip between the plate and the soffit of the beam. This slip may not be significant if **redistribution** of the adhesive and CFRP plate stresses can occur along the beam.

1. Experiment

2) However, under increasing time and temperature, the **slip** will become too large, the CFRP stress will reduce, and the strengthening will no longer fulfil its purpose of increasing the moment capacity, and the steel beam will yield.

3. Analysis

Step: Step-5, 50 years Increment 10: Step Time = 1.5453E+09 Primary Var: LE, Max. In-Plane Principal (Abs) Deformed Var: U Deformation Scale Factor: +1.000e+00