

Fire behaviour of a timber composite with GFRP reinforcement

A comparison with unreinforced laminated timber

Laura Schmidt Student (MSc IMFSE) laura@schmidtfa.de

Why timber?

 Design & economical advantages

www.designboom.com/

- Architecture and design
- Suggests natural and healthy living

- Rapid and clean assembly
- Potential for lower transportation cost

Why timber?

 Design & economical advantages

www.designboom.com/

 Climate challenges & sustainability

- Lower impact on the environment, e.g. lower CO₂ emissions
- Forest rotations of 35-70 years

Why timber?

Design & economical advantages

www.designboom.com/

Climate challenges & sustainability

"Timber is the only widely used building material that can be considered to be truly sustainable."

M. Ramage in The wood from the trees: The use of timber in construction

Why fibre glass with timber?

Design & economical advantages

www.designboom.com/

 Climate challenges & sustainability

• But safety is an issue!

www.architectsjournal.co.uk/

GLOBAL CO2 EMISSIONS BY SECTOR

02.09.2019

"Classical" compartment with non-combustible lining

Compartment with exposed timber

Objective of this research:

Improve the performance of engineered timber products under fire condition

- Reaction to fire (Ignition and fire growth)
- Fire resistance (Loss of load-bearing section)
- Potential for self-extinction

Using novel composite solutions

Engineered timber (LVL)

Laminated veneer lumber

Timber and adhesive

- Cost effective
- Combustible but charring

Glass fibre

- Non-combustible
- = Does not burn
 - To hinder oxidation of timber in case of fire
 - To hold charred timber layers together (to maintain integrity)
 - To act as an insulation for deeper layers

Engineered timber & Glass fibre in combination:

Improved timber composite product

8 specimen

- Each sample:
- 6 timber veneers (each 2 mm thick)
- 7 glass fibre mats
- Epoxy

Instrumentation

Thermocouple wire (welded) between layers:

- Top surface
- Back surface
- Every 3 mm in between
- To measure in-depth temperature throughout samples during fire exposure

Ultra-thin (0.13 mm) for minimum impact on burning behaviour

Experimental Setup

Cone Calorimeter

- Horizontal position
- Heater on top:
 - Constant 35 kW/m² on top surface only (representative for heat flux during a l ocalised fire, pre-flashover)
- Piloted ignition (spark)
- Analysis of exhaust gases

Results: Time to ignition

Time to
ignitionWithout
glass fibreWith glass fibre-< 400 g/m²</td>1015 g/m²Average (s) $60.5 \pm 4,5$ 69.25 ± 11.25 102.5 ± 1.5 Increase+14.5 %+69.4 %

Up to +70 % later ignition with glass fibre

Depends on type of glass fibre

Results: Time to ignition

$$t_{\rm ig} = \frac{\pi}{4} k \rho c \frac{(T_{\rm ig} - T_0)^2}{\dot{Q}_{\rm R}''^2}$$

Temperature at the surface of a semi-infinite solid exposed to a convective heat flux

Source: D. Drysdale "An introduction to fire dynamics"

Results: Time to ignition

$$t_{\rm ig} = \frac{\pi}{4} k \rho c \frac{(T_{\rm ig} - T_0)^2}{\dot{Q}_{\rm R}''^2}$$

Up to +70 % later ignition with glass fibre

Temperature at the surface of a semi-infinite solid exposed to a convective heat flux

Source: D. Drysdale "An introduction to fire dynamics"

Results: Time to ignition

Up to +70 % later ignition with glass fibre

Temperature at the surface of a semi-infinite solid exposed to a convective heat flux

Source: D. Drysdale "An introduction to fire dynamics"

Results: Time to ignition

$$t_{\rm ig} = \frac{\pi}{4} \frac{(T_{\rm ig} - T_0)^2}{\dot{Q}_{\rm R}''^2}$$

Up to +70 % later ignition with glass fibre

Temperature at the surface of a semi-infinite solid exposed to a convective heat flux

Source: D. Drysdale "An introduction to fire dynamics"

Results: Self extinction

- For all samples
 with GFRP layers
- For no sample made of pure timber of same thickness:
 Timber and epoxy totally consumed

Results: Fire contribution

- Similar initial peak for both sample types (500 kW/m²)
- With GFRP: rapid decline
- Fluctuation for samples without glass fibre (delamination)

Results: Loss of structural section

With **GFRP**

 Flame self-extinction between 45-65 % mass

Without **GFRP**

- Over 90 % of mass burned after 15 min
- Eventually all mass consumed

Results: Temperature gradient

With **GFRP**

Over time

Results: Temperature gradient

In-depth after 800 s

Without GFRP

Limitations

Future Work

Only proof of concept

Research performed at UQ at the moment

Samples not fully representative of engineered timber produced in industry

My Masters thesis starting January 2020 (Comments and support are most welcome!)

Longer ignition times

All types of glass fibre mat resulted in **longer time to ignition**, ranging from a 10 to 69 % increase.

Longer ignition times & lower fire contribution Same **peak HRR for both types** (ca. 500 kW/m²).

Samples with glass fibres

- three times lower average HRR
- than samples without glass fibre mat
- from 2 min after ignition

Longer ignition times & lower fire contribution

Longer evacuation times for occupants

Longer ignition times & lower fire contribution

Longer evacuation times for occupants Lower loss of structural section

After extinction

Samples with glass fibre mat

- weighed 45 to 75 % of their initial mass
- the thickness of these samples almost unchanged

Longer ignition times & lower fire contribution

Longer evacuation times for occupants Lower loss of structural section

Mass loss rate

- approximately 50 %
 lower for samples
 with glass fibres
- from 2 minutes after ignition

Longer ignition times & lower fire contribution

Longer evacuation times for occupants Lower loss of structural section:

Almost entire cross section for structural purpose

More efficient desgin

Self-extinction

- for all 1.9 cm thick timber composite samples
- containing glass fibre mat
- exposed to a heat flux of 35 kW/m².

Timber samples without glass fibres

- of the same thickness
- under the same heat flux, continued decomposition until burnout.

Extinction potential & integrity

Self-extinction

- for all 1.9 cm thick timber composite samples
- containing glass fibre mat
- exposed to a heat flux of 35 kW/m².

Timber samples without glass fibres

- of the same thickness
- under the same heat flux, continued decomposition until burnout.

Extinction potential & integrity Limitation of fire spread (Compartmentation) & residual capacity

Longer ignition times & lower fire contribution

Longer evacuation times for occupants Lower loss of structural section:

Almost entire cross section for structural purpose

More efficient desgin

Extinction potential & integrity

Limitation of fire spread (Compartmentation) & residual capacity

Acknowledgements

Professor Dilum Fernando

UQ Composites & UQ Fire

Australian Research Council under the Linkage Project funding scheme (LP150101033)

Thank you

Laura Schmidt | Occupational Trainee The University of Queensland

| Master Student The International Master of Science in Fire Safety Engineering

🖾 laura@schmidtfa.de

in https://www.linkedin.com/in/laura-schmidt-9a2b56174/

Results: Loss of structural section

With **GFRP**

 Mass loss rate significantly declines:
 <10 g/m²s after 2 min

