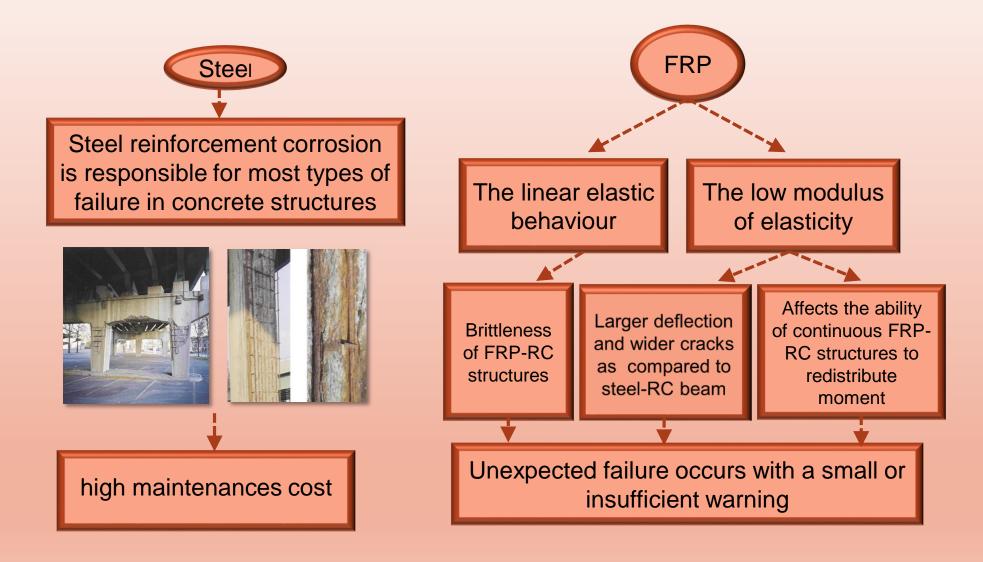


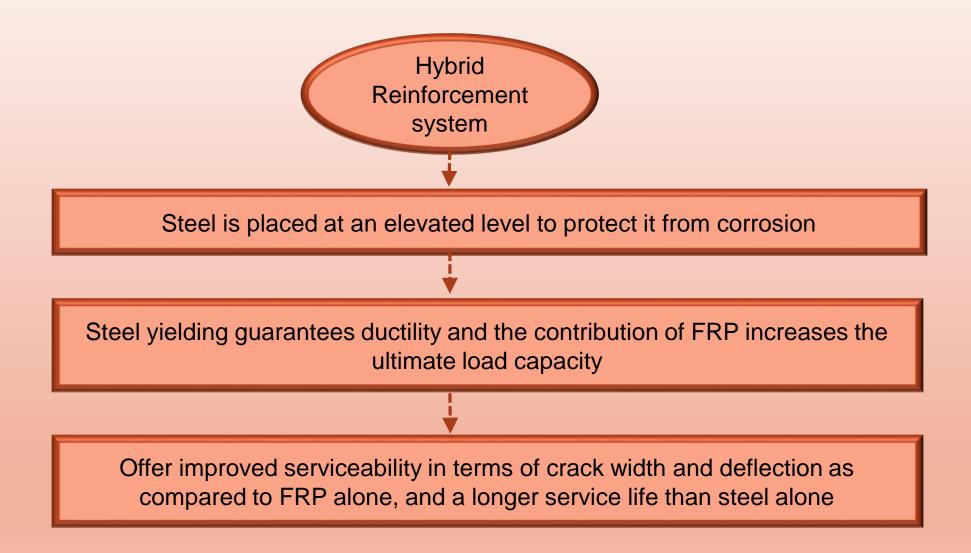
Faculty of Engineering & Informatics

# Moment-Curvature Behaviour of Hybrid Reinforced Concrete T-Beams

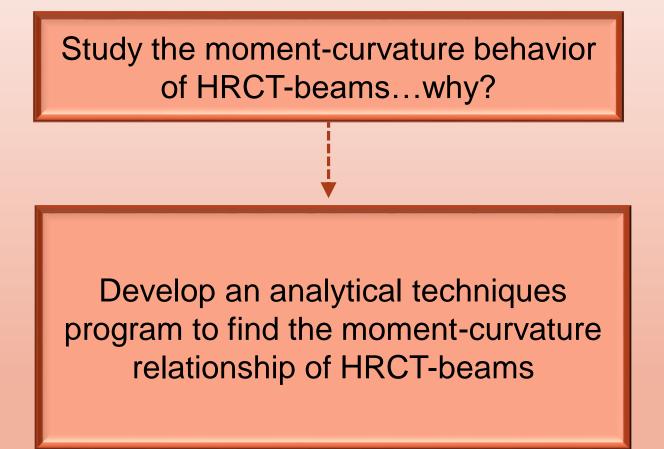
Hanady Almahmood Prof. Ashraf Ashour Dr. Therese Sheehan




# Outline

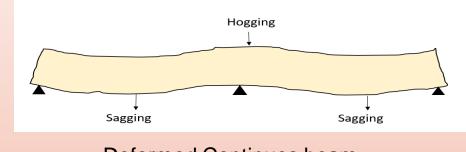

- Hybrid Reinforcement System
- Aim and Objectives
- Description of the Analytical Programme
- Sensitivity Study
- Validation
- Parametric Study
- Conclusions



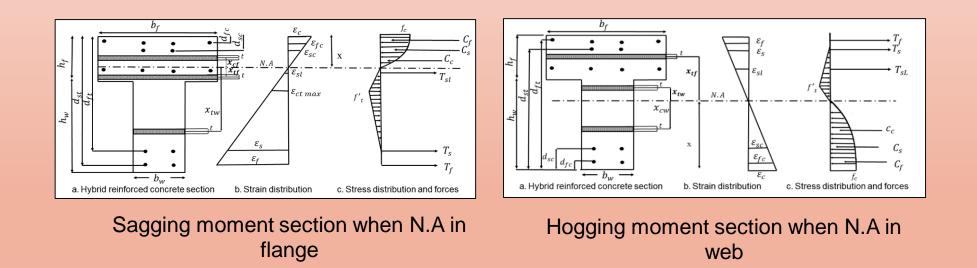

## **Hybrid-Reinforcement System**



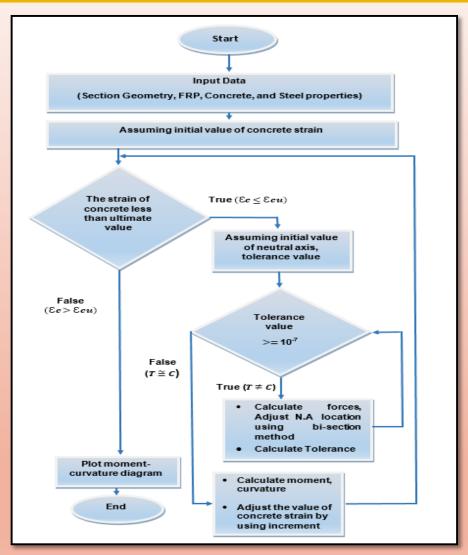






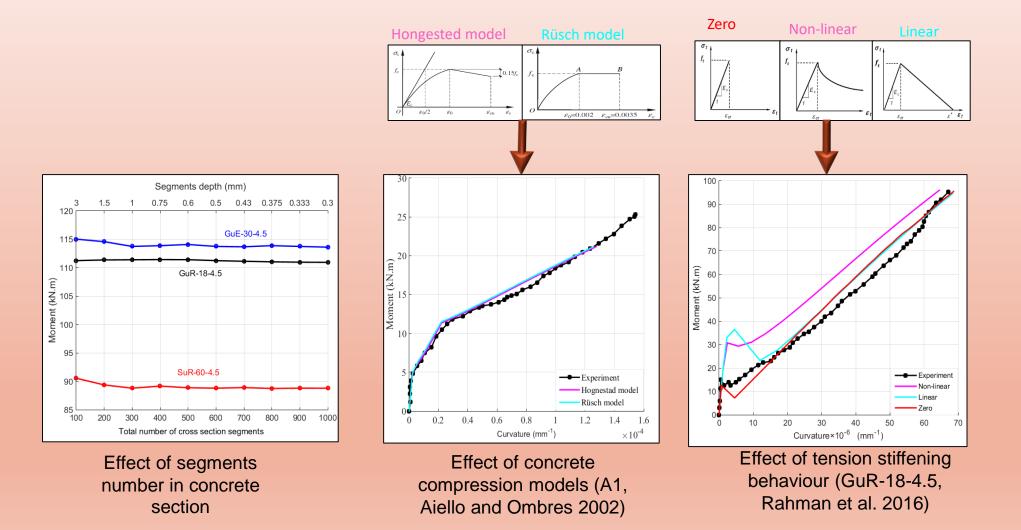




## **Description of the Analytical Program**



**Deformed Continues beam** 



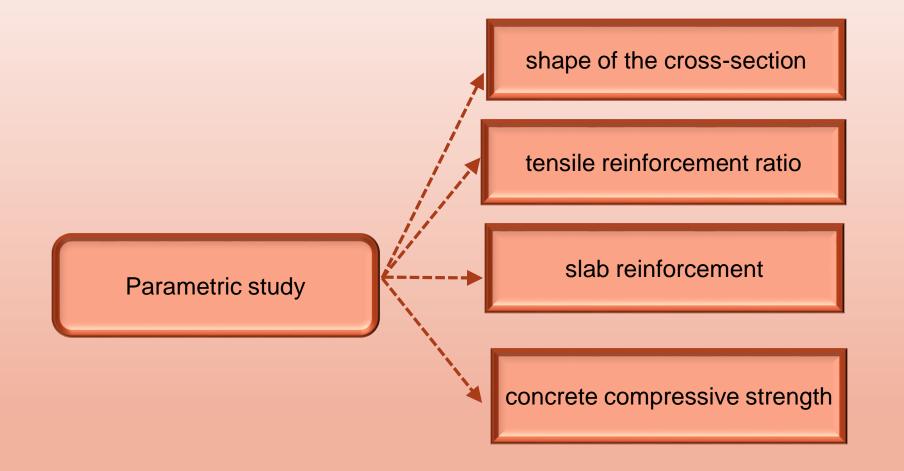





The flow chart of the analytical programme

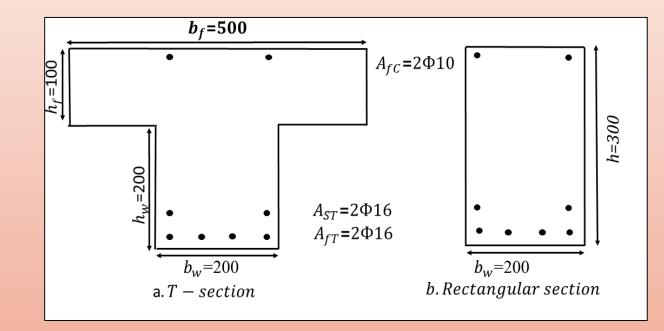


#### **Sensitivity Study**





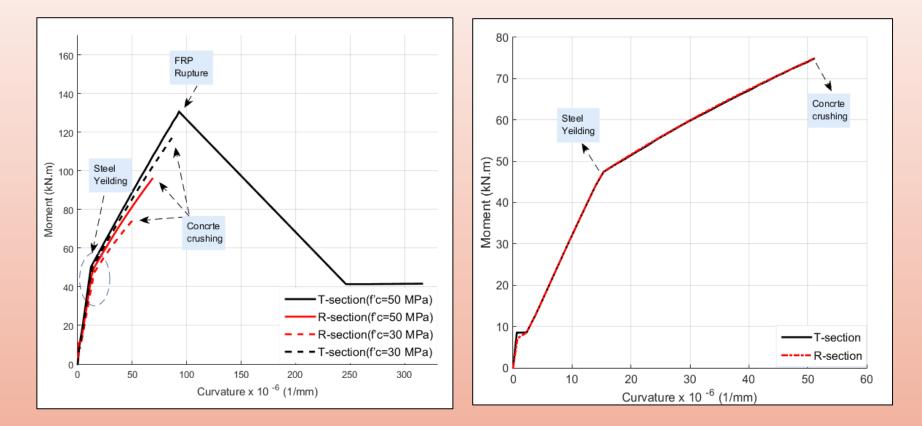

| Ref                                  | Beam | FRP<br>type | E <sub>r</sub><br>GPa | Dimensions<br>$b \times h$<br>(mm <sup>2</sup> ) | Type of<br>losding | Span<br>mm | f'c<br>MPa | A <sub>fbot</sub><br>mm <sup>2</sup> | A <sub>sbot</sub><br>mm <sup>2</sup> | A <sub>ftop</sub><br>mm <sup>2</sup> | A <sub>stop</sub><br>mm <sup>2</sup> | M <sub>exp</sub><br>kN.m | M <sub>tho</sub><br>kN.m | $\frac{M_{th}}{M_{ep}}$ | Exp.<br>Mode<br>of<br>failure | Thea.<br>Mode<br>of<br>failure |
|--------------------------------------|------|-------------|-----------------------|--------------------------------------------------|--------------------|------------|------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|-------------------------|-------------------------------|--------------------------------|
| (Aiello and<br>Ombres,<br>2002)      | A1   | AFRP        | 49                    | 150×200                                          | Two<br>point       | 2700       | 45.7       | 88.31                                | 100.48                               | _                                    | 100.48                               | 25.14                    | 21.59                    | 0.85                    | SY-CC                         | SY-CC                          |
|                                      | A2   | AFRP        | 50.1                  | 150×200                                          | Two<br>point       | 2700       | 45.7       | 157                                  | 100.48                               | -                                    | 100.48                               | 28.41                    | 25.8                     | 0.90                    | SY-CC                         | SY-CC                          |
|                                      | A3   | AFRP        | 50.1                  | 150×200                                          | Two<br>point       | 2700       | 45.7       | 235.5                                | 226.08                               | -                                    | 100.48                               | 35.55                    | 32.17                    | 0.90                    | SY-CC                         | SY-CC                          |
|                                      | B2   | AFRP        | 49                    | 150×200                                          | Two<br>points      | 2700       | 45.7       | 88.31                                | -                                    | -                                    | 100.48                               | 20.21                    | 18.12                    | 0.75                    | сс                            | cc                             |
|                                      | C1   | AFRP        | 49                    | 150×200                                          | Two<br>points      | 2700       | 45.7       | 88.31                                | 100.48                               | -                                    | 100.48                               | 25.14                    | 22.76                    | 0.89                    | SY-CC                         | SY-CC                          |
| (Leung<br>and<br>Balendran,<br>2003) | L0   | GFRP        | 40.8                  | 150×200                                          | Two<br>point       | 2200       | 28.5       | -                                    | 157.08                               | -                                    | -                                    | 13.76                    | 10.32                    | 0.75                    | SY-CC                         | SY-CC                          |
|                                      | L2   | GFRP        | 40.8                  | 150×200                                          | Two<br>point       | 2200       | 28.5       | 142.67                               | 157.08                               | -                                    | -                                    | 22.23                    | 18.31                    | 0.82                    | SY-CC                         | SY-CC                          |
|                                      | L5   | GFRP        | 40.8                  | 150×200                                          | Two<br>point       | 2200       | 28.5       | 214                                  | 157.08                               | -                                    | -                                    | 22.07                    | 20.77                    | 0.94                    | SY-CC                         | SY-CC                          |
|                                      | H2   | GFRP        | 40.8                  | 150×200                                          | Two<br>point       | 2200       | 48.8       | 142.67                               | 157.08                               | -                                    | -                                    | 21.11                    | 24.21                    | 1.15                    | SY-CC                         | SY-CC                          |
| (Qu et al.,<br>2009)                 | B1   | GFRP        | -                     | 180×250                                          | Two<br>point       | 1800       | 24.76      | -                                    | 452.16                               | -                                    | 157.08                               | 32.37                    | 32.21                    | 1.00                    | SY-CC                         | SY-CC                          |
|                                      | B2   | GFRP        | 45                    | 180×250                                          | Two<br>point       | 1800       | 24.76      | 506.45                               | -                                    | -                                    | 157.08                               | 43.89                    | 34.98                    | 0.80                    | сс                            | cc                             |
|                                      | B3   | GFRP        | 45                    | 180×250                                          | Two<br>point       | 1800       | 28.14      | 253.23                               | 226.08                               | -                                    | 157.08                               | 38.28                    | 37.24                    | 0.97                    | SY-CC                         | SY-CC                          |
|                                      | В4   | GFRP        | 41                    | 180×250                                          | Two<br>point       | 1800       | 28.14      | 396.91                               | 200                                  | -                                    | 157.08                               | 39.66                    | 40.21                    | 1.01                    | SY-CC                         | SY-CC                          |
|                                      | B5   | GFRP        | 37.7                  | 180×250                                          | Two<br>point       | 1800       | 29.2       | 141.69                               | 401.92                               | -                                    | 157.08                               | 36.36                    | 37.46                    | 1.03                    | SY-CC                         | SY-CC                          |
|                                      | B6   | GFRP        | 45                    | 180×250                                          | Two<br>point       | 1800       | 29.2       | 253.23                               | 401.92                               | -                                    | 157.08                               | 42.57                    | 43.43                    | 1.02                    | SY-CC                         | SY-CC                          |
|                                      | B7   | GFRP        | 37.7                  | 180×250                                          | Two<br>point       | 1800       | 34.6       | 141.69                               | 113.04                               | -                                    | 157.08                               | 23.55                    | 31.22                    | 1.33                    | SY-CC                         | SY-<br>FRPR                    |
|                                      | B8   | GFRP        | 41                    | 180×250                                          | Two<br>point       | 1800       | 34.6       | 369                                  | 1205.76                              | -                                    | 157.08                               | 63.3                     | 68.87                    | 1.09                    | SY-CC                         | SY-CC                          |


#### Table 1: Sample of validation



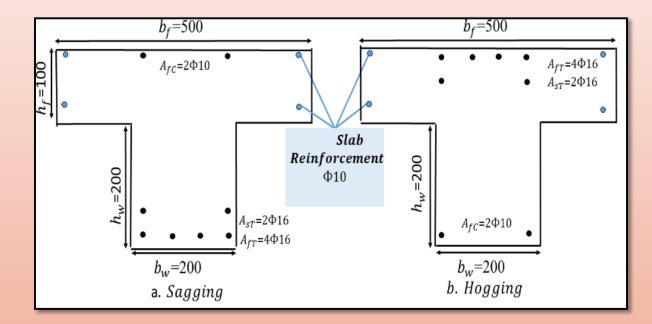





#### (T section vs Rectangular section)



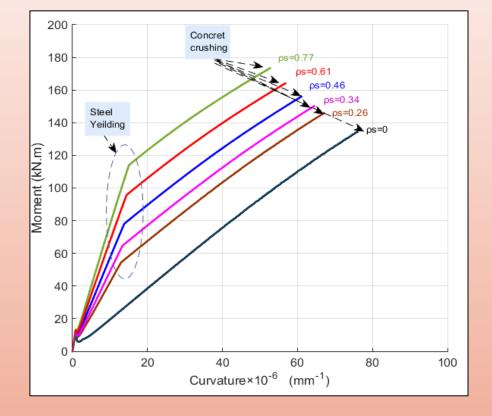
Details of the different cross-section chosen for parametric study




#### **Effect of the Flange**



Moment-curvature relationship for different type of cross-section (sagging moment). Moment-curvature relationship for different type of cross-section (hogging moment).

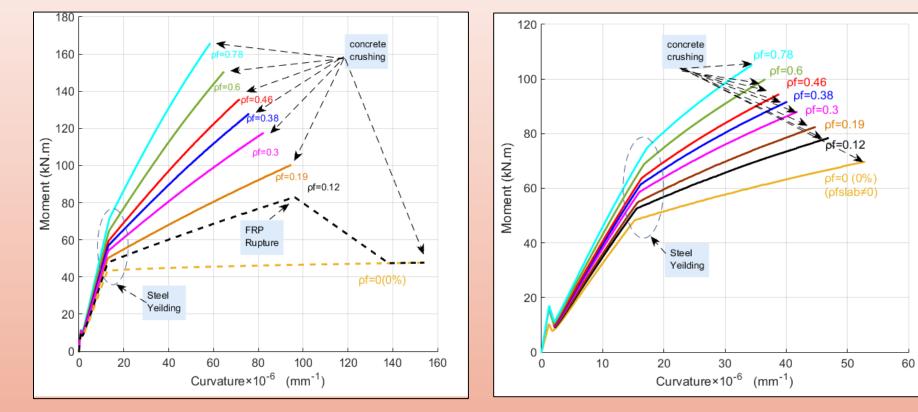





Control specimens used in the parametric study.



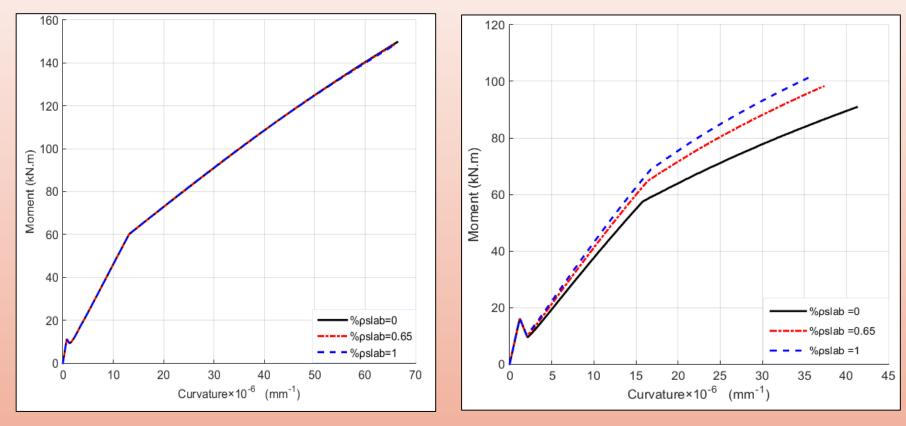
## **Effect of Tensile Reinforcement Ratio**




130 Concret Steel 120 crushing Yeilding 100 Moment (kN.m) 80 ps=0.26 60 os=0 40 20 20 10 30 40 0 50 Curvature  $\times 10^{-6}$  (mm<sup>-1</sup>)

Moment-curvature relationship for different tension steel reinforcement ratios (sagging section). Moment-curvature relationship for different tension steel reinforcement ratios (hogging section).



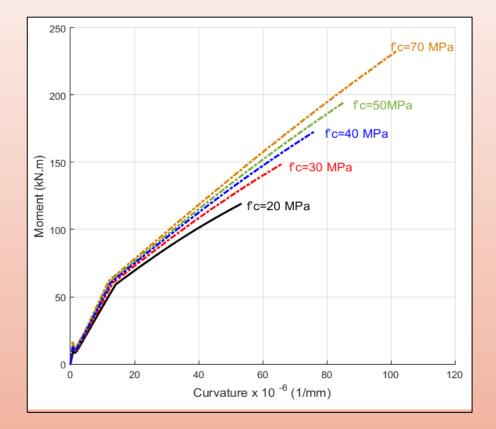

### **Effect of Tensile Reinforcement Ratio**



Moment-curvature relationship for different tensile FRP reinforcement ratios (sagging section). Moment-curvature relationship for different tensile FRP reinforcement ratios (hogging section).



#### **Effect of Slab Reinforcement**




Moment-curvature relationship for different slab reinforcement ratio (sagging section).

Moment-curvature relationship for different slab reinforcement ratio (Hogging section).



#### **Effect of Concrete Compressive Strength**



180 160 fc=70 MPa 140 °c=50MPa 120 fc=40 MPa Moment (kN.m) 08 fc=30 MPa fc=20 MPa 60 40 20 40 10 20 30 50 60 70 80 0 Curvature x 10 -6 (1/mm)

Moment-curvature relationship for different Concrete compressive strength (Sagging). Moment-curvature relationship for different Concrete compressive strength (Hogging).



#### Conclusions

- The difference between rectangular and T-sections is more obvious in the sagging section, due to the effect of the flange part.
- Increasing the slab reinforcement ratio will increase the moment capacity in the hogging sections, whereas it has a slight effect on the sagging sections.
- Increasing either steel or FRP tensile reinforcement ratio will increase the moment capacity in both sagging and hogging sections.



## Conclusions

- Adding steel to FRP-RC beams changes the mode of failure from brittle failure to ductile failure.
- Adding steel reinforcement to FRP beams enhance the ductility and stiffness of the beam.
- Increasing the compressive strength of concrete increases both moment capacity and curvature of the section in both sagging and hogging sections.



# Thank you for listening