Wagners Pinkenba Wharf Project

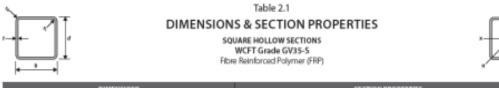
Design Validation Of GFRP Materials For Use In An Innovative Wharf Structure ACIC 2019 – University of Birmingham

WWW.WAGNER.COM.AU

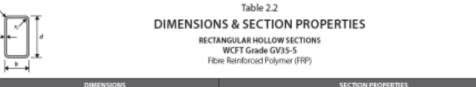
Todays Presentation

- Wagners Background
- Bridge Beam Development
 - Development of composites in bridge applications
- Pinkenba Wharf
 - Design
 - Design Validation
 - Fabrication and QA
 - Installation
- Future Developments

Wagners CFT Building the Future



- Head Office Toowoomba, Queensland Australia
- Manufactures and Fabricates
 1400 tonne of
 Fibre Composite
 Material per annum
- Australia's only Pultruder
- Publicly Listed on Australian Stock
 Exchange –
 ASX:WGN


Pull Wound Sections

SQUARE HOLLOW SECTIONS - WCFT Grade GV35-S

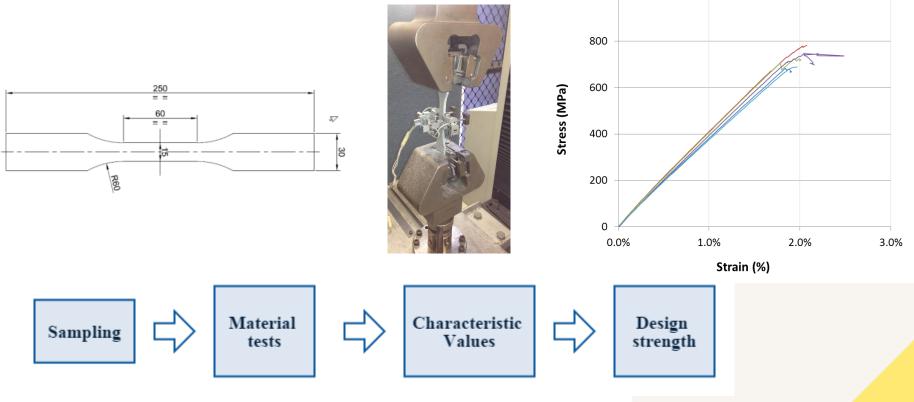
	DIMENSIONS								SECTION PROPERTIES							
	Depth	Vesignatio Width	n Thick		Outside Corner Rackus	leside Corner Backus	Mass	External Surface Area	Gross Section Area	A	bout n- and y-axi	1	About	reads	Torsion Constant	Torsion Medulus
	d	b	t		ί,	4	perm	perm	A.,	L .	Z,	5 K	L	Z,	1	C
	m	mm	1978		mm	mm	kg/m	ari ƙa	nm ²	10 ⁴ mm ⁴	10 ³ mm ³	nn	10 ⁴ mm ⁴	10 ³ mm ³	10 ⁴ mm ⁴	10 ³ mm ³
w	FT 125	125	x 6.4	945	16.0	4.75	5.85	0.463	2970	6.89	110	48.2	6.90	81.9	18.9	46.2
w	FT 100 :	e 100	x 52	5H5	18.0	4.75	3.75	0.365	1905	2.80	56.1	38.4	2.81	42.3	4.55	30.4

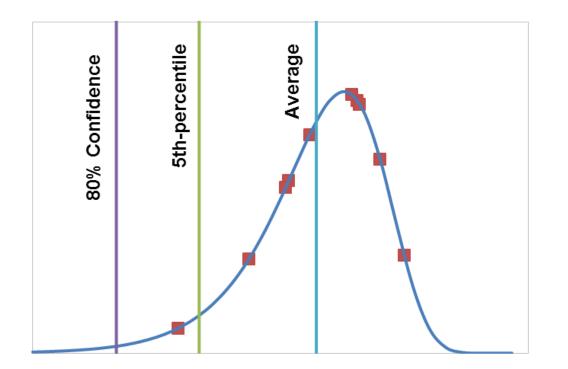
RECTANGULAR HOLLOW SECTIONS - WCFT Grade GV35-5

	DIMENSIONS										SECTION PROPERTIES								
	Dept		igrati With		Thick.		Outside Corner Radius	Inside Carner Radius	Mass	External Surface Area	Gross Section Area		About x-anh			Abouty-ash		Tersion Constant	Torsion Modulus
	4		b				τ _e	4	perm	per m	Ag	4	2,	F	- ly	24	5	1	¢
			mm		mm		mn	m	kg/re	mi/m	anan ₂	10 ⁴ mari ⁴	10 ¹ 849 ³	m	10 ⁴ mm ⁴	10 ³ nm ³	rene	10 ⁶ 0/0 ⁴	10 ³ may ³
-1	WCFT 100		75	ж	5.0	RHS	16.0	4.75	3.12	0.333	1584	2.14	42.0	36.8	137	36.5	29.4	2.76	59.2

BONDED RECTANGULAR BEAMS - WCFT Grade GV35-5

Table 4.1 DIMENSIONS & SECTION PROPERTIES BONDED RECTANGULAR BEAMS WCFT Grade GV35-S Fibre Reinforced Polymer (FRP)


	DIMENSIONS								SECTION PROPERTIES								
Dept	Designation Depth Width Thick.			Outside Corner Redius	Imide Corner Redius	Mass	External Surface Area	Gross Section Area		Abortxaxis			Aboutyaais		Tonion Constant		
d		b		. E		1 4	6	perm	per m	A.,	le le	Zx	6	4	Z ₄	r,	1
rem		1919		mn		1999	1000	- kg/m	m ² lim	ram ²	10 ^h mm ⁴	10 ³ mm ³	nen	10 ⁴ mm ⁴	to ¹ enes ³	inin	10 ^h mm ⁴
WOFT 625	. x	125	ж	6.40	898	10.0	4.75	29.3	1.57	14640	496	1595	163	34.4	551	40.2	54.6
WOFT 500	×	125	ж	6.40	898	10.0	4.75	23.4	1.30	11679	260	1038	148	27.5	441	46.2	45.7
WOFT 375	к	125	ж	6.40	898	19.0	4.75	17.6	1.05	8909	113	605	113	20.7	350	462	32.8
WCFT 250	×	125	ж	6.40	899	10.0	4.75	11.7	0.796	5935	37.0	296	78.9	13.8	230	48.2	21.8
WOFT 500	×	100	ж	5.20	899	19.0	4.75	18.8	1.27	9527	205	818	147	14.0	280	38.4	22.8
WOFT 400	x	100	ж	5.20	890	10.0	4.75	15.0	1.05	7621	106.5	\$32	118	11.2	224	38.4	18.2
WC7T 300	x	100	ж	5.20	890	10.0	4.75	11.3	0.828	5716	46.5	380	90.2	8.41	168	38.4	15.7
WCFT 200		100	ж	5.20	898	10.0	4.75	751	0.606	3011	15.1	151	63.0	5.61	112	30.4	9.11


Derivation of Characteristic Material Properties

1000

• ASCE (2010) Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures (Final), American Society of Civil Engineers

Characteristic Values

Characteristic Value

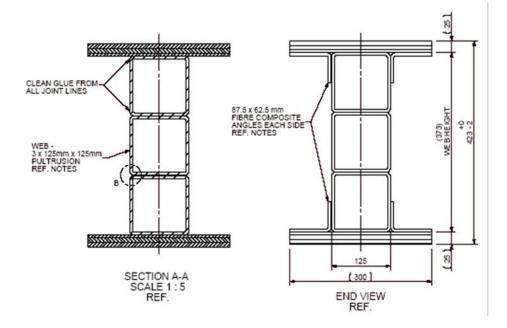
Weibull function

ASTM D7290

- Statistically determined values
- Considering two parameters – Shape and Scale
- Representing 80 % lower confidence bound on a 5th percentile of specific population

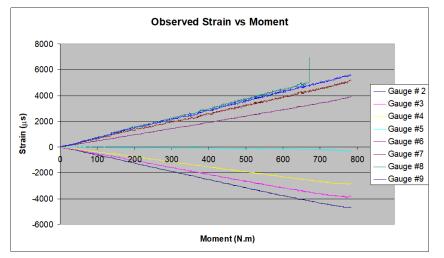
Application to Pedestrian Structures

- Wagners development process continued with Pedestrian Infrastructure
- Over 500
 Structures
 around
 Australia, USA,
 NZ, UK and
 UAE Coastline

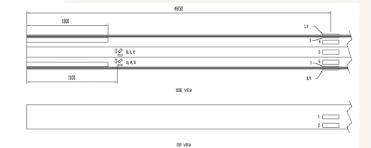


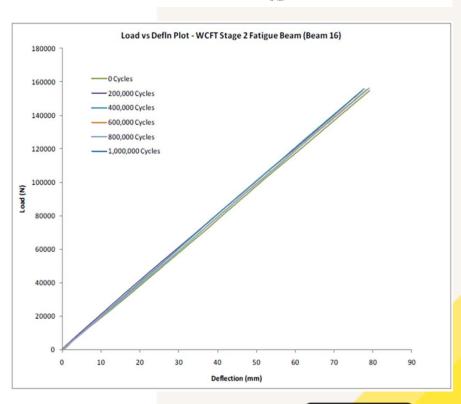
- Little Malop St Bridge Geelong
- Raked Truss + Throw Screens
- 23m Span
- Designed for Horizontal Impact loading to AS5100
- Large vertical curve Architectural and clearance to rail

Beam Development



Beam Property	Requirement	Tolerance	Wagners Beam	Requirement Met?	
Max width	350 mm	+0	300mm	Yes	
Max depth	425 mm	+0	424mm	Yes	
Mmax at failure	660 kNm	-0	780kN	Yes	
EI of girder	29.6x10 ¹² Nmm ²	+/- 10%	27.4x10 ¹² N.mm ²	Yes	
Working live load capacity	109 kNm	NA	NA	NA	
Shear Capacity	350 kN	-0	435 kN	Yes	
Max Deflection (at ultimate = 350kN)	170 mm	+/- 10%	172.4mm	Yes	



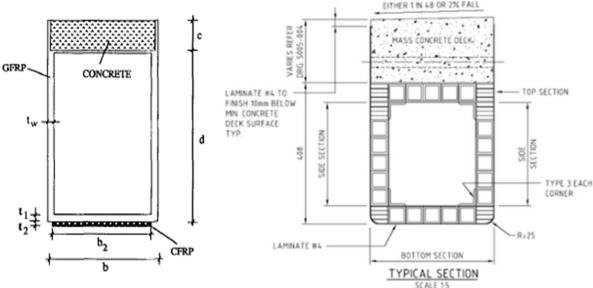


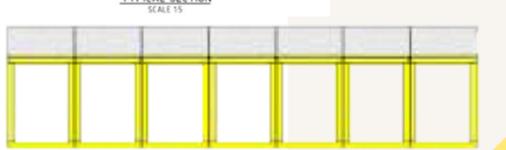
Beam Testing - Fatigue

WAGNERS

Timber Bridge Rehabilitat

Replacement of timber structures With FRP Piles, girders and decks

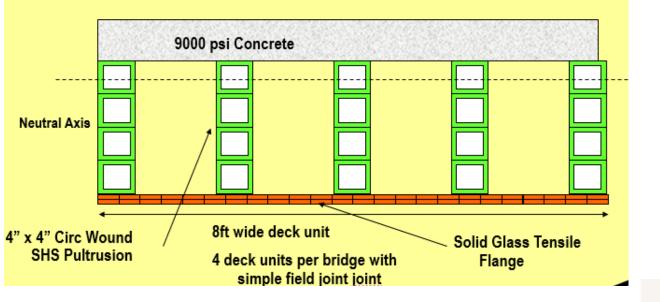

Concrete / FRP Bridge Superstructures

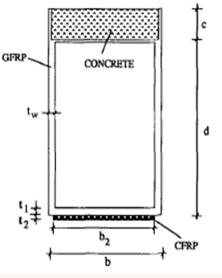

 Erie County Department of Public Works oversees 1200 lane mile of road, upon which 24 feet of snow falls every year. The county dumps 96,000 tonne of de-icing salts on their roads each year.

Evolution of a Hybrid Bridge Deck

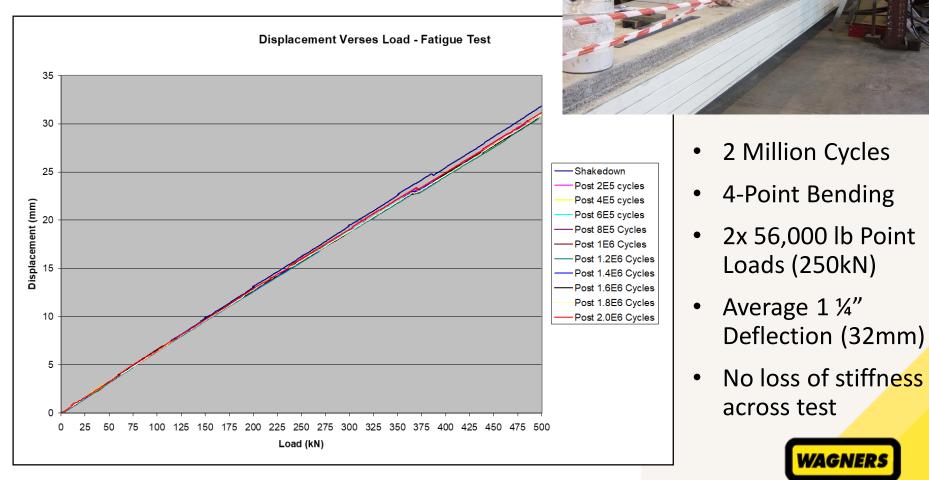
- Australian
 Approach –
 Van Erp et al
 2002
- Funding from Wagners

 Early Concept -Triantafillou and Meier (1992)


Evolution of a Bridge Deck


Australia's First FRP Deck Coutts Crossing, Grafton NSW

Erie County Concept Section



- AASHTO HS25 Design Vehicle
- L/500 allowable deflection under Live Load
- Early Concept -Triantafillou and Meier (1992)

Testing and Analysis Fatigue

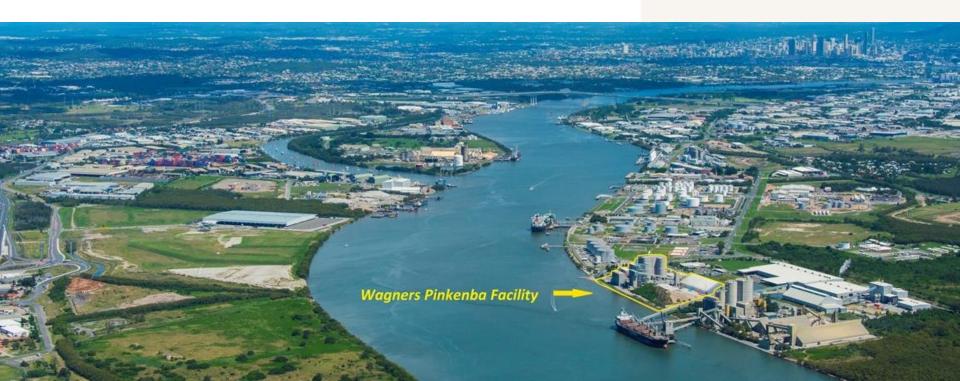
14 Years of Service

After 14 years of service the following observations are made:

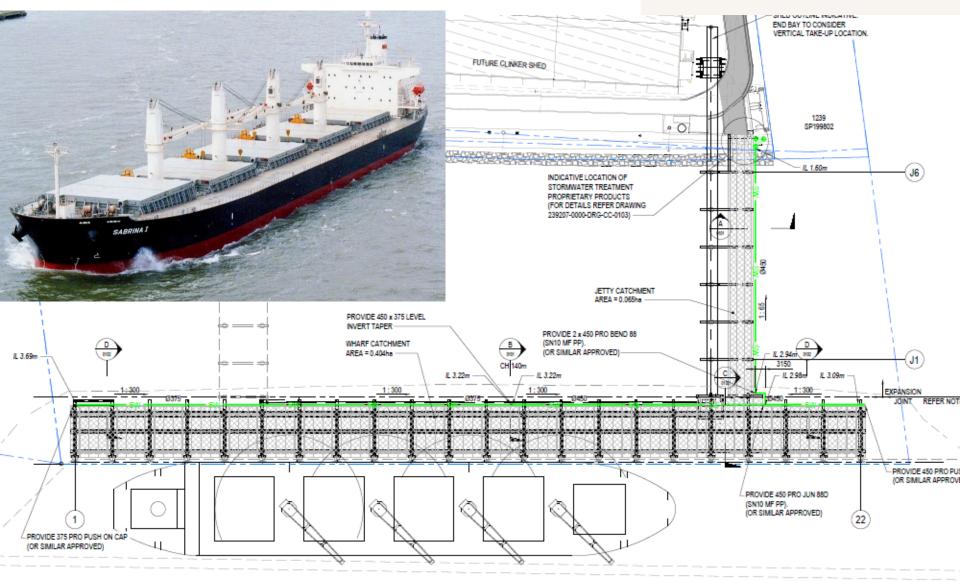
- No deck surface deterioration
- No Corrosion of FRP materials
- No Structural failures
- No damage from debris (underside)

Conclusion –

FRP Materials are living up to the reputation!

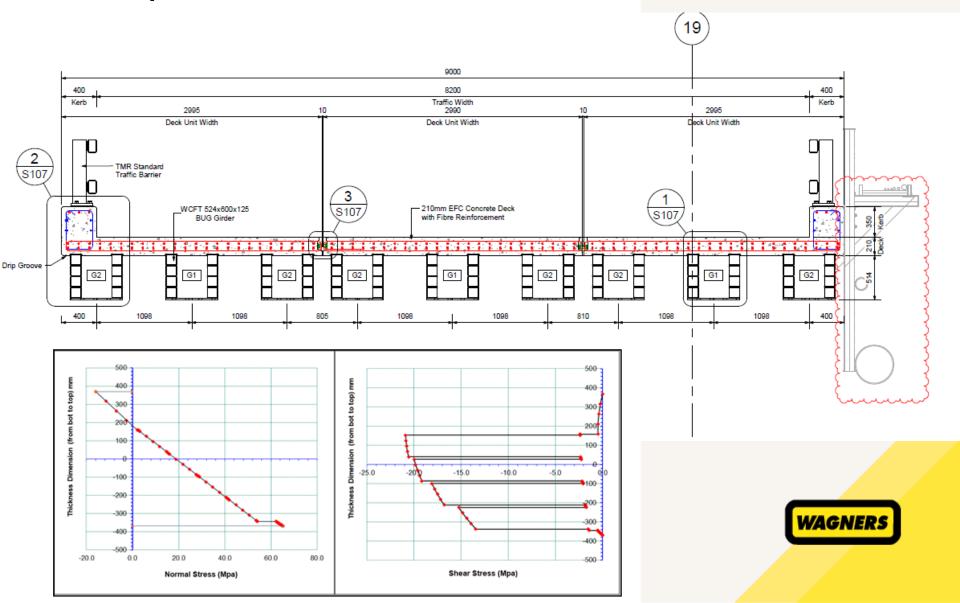


Pinkenba Wharf


Wagners Clinker Grinding Facility

Servicing Brisbane and SEQ Cement Market

Pinkenba Wharf



Loading

- Superstructure
 - FRP U-Girder Deck
 - Class 25 Wharf 3.6psi deck UDL (25kPa) + 112,000 lb point load on 3ft square point load from Crane (General Purpose wharf)
 - Construction Load Liebherr 1280 tracked crane
 - Concrete Top (Earth Friendly Concrete)
 - FRP Rebar in Concrete
 - No Corrosion in Deck

AS·4997¤	AS·5100¤	Client Requested p					
25·kPa·UDL¤	W80·wheel·load¤	40t articulated dump truck p					
500kN·PL·over·	A160·axle·load¤	80t fully loaded clinker					
1200x1200mm·sq.¤		hopper¤					
SM1600¤	SM1600.design.vehicle¤	35t straddle carrier¤ ¤					
HLP¤	HLP·design·vehicle¤	forklifts¤ ¤					
50t·SWL·mobile·crane¤	¤	Conveyors and transfer ·					
		towers¤					
¤	¤	Liebherr·LR1280·tracked·					
		crane for construction [¤]					
Table-1 Vertical loading criteria for Pinkenba Wharf							

Proposed Section

Prototyping and Testing

- The testing program was broken up into five key tests:
 - Test 1: aggregate shear key tension test
 - To test tensile capacity and efflorescence of concrete ٠
 - Ultimate tensile capacity of shear key from direct tension (wave uplift) loads
 - Test 2: FRP reinforcing and concrete deck capacity
 - Test ultimate moment capacity ٠
 - Test ultimate shear capacity
 - Test ultimate punching shear capacity
 - Test ultimate bending capacity of slab
 - Test fatigue performance of slab over 2e6 cycles
 - Test long-term creep performance ٠
 - Test longitudinal shear key capacity
 - Measure crack widths

Test 3: full scale U-girder and concrete deck test

Test ultimate moment capacity

Test ultimate shear capacity

Test ultimate bending capacity of slab

Test fatigue performance of slab over 2e6 cycles

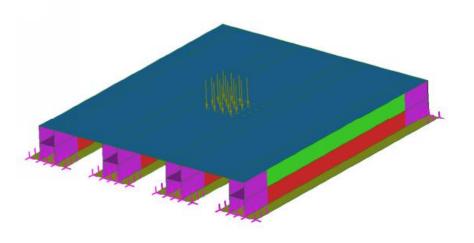
Test long-term creep performance Test longitudinal shear key capacity

Test 4: FRP reinforcing bar tests

Test tensile modulus

Test elastic modulus

Test shear strength


Test ultimate tensile strength

Deriving GFRP bond coefficient

Test 5: U-Clip joint capacity

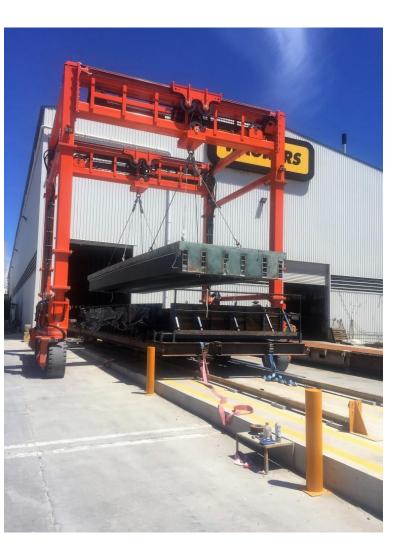
Test shear and tension across U-cline in construction joints between each character

Testing – Point Loads through Deck

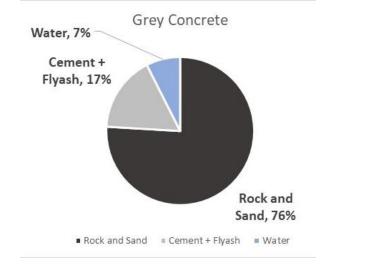
Testing – Full Scale Beam Bending

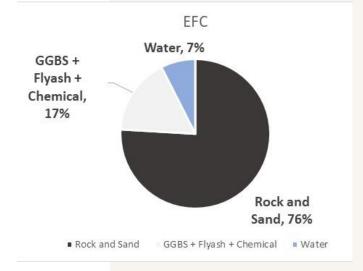
Fabrication

Fabrication


FRP Rebar

Rebar and U-Girders in Form


Deck Units



Geopolymer Concrete Wagners Earth Friendly Concrete

WAGNERS

Structural Performance (Compared to Portland cement concrete)	Durability (Compared to Portland cement concrete)
All commercial grades: 25 to 65 MPa	High acid resistance (sewer)
30% higher flexural tensile strength	High sulphate resistance
Low drying shrinkage – typ 350 $\mu\epsilon$	High chloride ingress resistance (marine)
Similar modulus and poisons ratio	Low heat of reaction
High fire resistance	

Pinkenba Wharf The first of its kind

Questions?

