

Efficient Shear Retrofitting of RC Beams using Prestressed Deep Embedded (DE) FRP Bars

Hiran Yapa

University of Peradeniya

Sri Lanka

Shear retrofitting options

Deep Embedment (DE) technique

- First proposed by Valerio and Ibell in 2003
- Holes are drilled from the soffit
- Void is filled with epoxy resin
- DE reinforcement is then installed

DE system attributes

The core installation

Facilitates truss action

- More confinement to the r/f
 - Less de-bonding issues
- Limited external exposure
 - Steel can also be used
 - Less vulnerability for damage

more shear enhancement!

Further attributes...

No need of web/slab approach

No surface preparation

DE materials

FRP bars
CFRP
GFRP
AFRP

Steel

Past investigations

Influencing DE parameters

Paramo	eter	Influence	Investigators
Bar spacing		wider spacing is less effective	Mofidi et al. (2012)
Bar inclination	θ	inclined bars are more effective	Baros et al. (2012)
Interaction with internal shear reinforcement		higher the internal shear r/f density, lower is the DE effectiveness	Mofidi et al. (2012)
Bar surface texture		plain surface is more effective than sand coated surface	Mofidi et al. (2012)
Bond			o

Bond

Bar type		Average bond strength (MPa) – failure mode			
	15 mm	30 mm	45 mm	60 mm	75 mm
		Non-sag epoxy (Hilti 500 ¹⁹)			
Steel 8 Carbon 7·5 Carbon 6 Glass 9 Aramid 7·5	37-SR 36-IS 33-IS 25-IS 17-IS	36-BY 32-IS 30-IS 27-IS 14-IS	27-BY 28-IS 27-IS 24-IS 10-IS	20-BY 24-IS 23-IS 20-IS 07-IS	16-BY 25-IS 21-IS 16-BR 07-IS
		Low-viscosity epoxy (Araldite ¹⁷)			
Steel 8 Carbon 7·5 Glass 9 Aramid 7·5	37-SR 33-IS 36-IS 26-IS	27-SR 22-IS 4-IS 20-IS	26-BY 28-IS 27-IS 18-IS	21-BY 30-IS 22-IS 17-IS	6-BY 3 -IS 25-BR 3-IS
		Medium strength paste (Hilti 150 ²⁰)			
Steel 8 Carbon 7·5 Glass 9 Aramid 7·5	10-SR 17-IS 16-IS 07-IS	17-SR 17-IS 16-IS 06-IS	26-BY 16-IS 17-IS 08-IS	21-BY 19-IS 17-IS 08-IS	l 6-BY l 9-IS l 7-IS 05-IS

Steel 8 mm vs. CFRP 7.5 mm

Bond-slip behaviour

Bar cast into concrete

Shear enhancement

Investigation	Remarks	Shear enhancement
Valerio and Ibell (2003)	10 beams retrofitted with AFRP and steel	85% (up to flexure failure)
Mofidi et al. (2012)	Large scale T beams	45%
Raicic et al. (2017)	Continuous T beams	70%
Dirar and Theofanous	Large scale: Deep beams	33%
(2017)	Shallow beams	96%

DE element contribution?

Efficiency?

Material	Strain capacity (10 ⁻⁶)
CFRP	18000
AFRP	25000
GFRP	25000
Prestressing steel	10000

How would it be if the DE bar is PRESTRESSED?

Experience of prestressed shear retrofitting

Work by:

- Lees et al. (2002)
- Kesse and Lees (2007)
- Hould and Lees (2009)
- Dirar et al. (2012)
- Yapa and Lees (2014)

CFRP strap system

Prestress application was impressive in terms of:

- \checkmark Shear enhancement
- ✓ Serviceability performance
- ✓ Material usage
- ✓ Etc.

Initial objective

Assess the potential of application of prestress to the DE shear retrofitting system

> Options via experiments via predictions

Initial objective

Assess the potential of application of prestress to the DE shear retrofitting system

> Options via experiments via predictions

Prediction of DE behaviour

Technical Report 55 (TR 55)

$$V_f = \frac{\varepsilon_{fse} E_{fd} A_f(\cos\alpha + \sin\alpha)}{s_b} d_{eff}$$

Mofidi et al. (2012)

Technical Report 55 (TR 55)

"Large-scale Reinforced Concrete T-beams Strengthened in Shear with Embedded GFRP Bars", (Dirar and Theofanous, 2017)

Numerical Modelling

Qapo et al. (2016) developed 3D Finite Element Model for:

- Valerio and Ibell (2003)
- Mofidi et al. (2012)
- Qin et al. (2014)

experiments

Geometry	Element Model
Concrete	3D Isoparametric 8 Node Solid Brick
Steel Plate	3D Isoparametric 6 Node Solid Wedge
Longitudinal & Stirrups	Truss like Elements
FRP	3D Truss like 2 Node

Concrete	Total Strain Crack (Smeared Rotating)
Compression & Softening	Thorenfeldt – Vecchio Collins
Tension Softening	Linear
Shear	Explicit model was not required

Steel Stirrup & Plates	Elastic-Perfectly Plastic Stress-Strain Model
FRP Bars	Linear – Brittle Stress- Strain Model

Interface	Model
Steel Stirrup - Concrete	Perfect Bond
FRP - Concrete	4 Node 3D Interface Elements BPE Bond-Slip Model

Qapo et al.'s results

Load-displacement behaviour

DE strains

Qapo et al.'s results

Shear link strains

(b)

Objective and scope

Assess the potential of application of prestress to the DE shear retrofitting system via numerical analysis

Numerical investigation

Geometrical parameters

Material parameters

Concrete	C32/40		
	Tensile	H16	fy = 500 MPa
Steel	Compression	H12	fy = 500 MPa
	Shear	R6	fy = 250 MPa
DE	CEDD	7.5	fy = 2000 MPa
	ULKL	mm	E = 120 GPa

MIDAS FEA

Advanced Nonlinear and Detail Analysis System

midas FEA is state of the art software, which defines a new paradigm for advanced nonlinear and detail analysis in civil structures.

idas FEA is founded the expertise in geometry modeling, esh generation , analysis and contemporary graphics echnologies accumulated since 1989.

midas FEA, a total solution for civil-oriented analysis problems, provides a number of unique and practical tools, midas FEA, combining powerful pre/post processor and a solver co-developed from MIDAS IT and TNO DIANA, stands for reliability and utmost accurate solution.

Copyright © since 1989 MIDAS Information Technology Co., Ltd. All rights reserved.

Attributes

- Non-linear modelling
- Total strain crack model
- Construction stage analysis
- Bonded reinforcement element
- Availability of latest material models

Mesh parameters

- Beams
 - 2D isotropic plane-stress elements
 - Element size: 25 mm square
- Steel bearing plates
 - Triangular plane- stress elements
 - Elastic
- Reinforcement
 - Embedded 1D elements
- CFRP DE bars
 - 1D isotropic truss elements
- Bond rigid

Model validation (by Kurukulasuriya et al. 2017)

 \bigcirc

Material model selection

- Concrete compression: Thorenfeldt
- Concrete tension: Exponential
- Concrete crack model: Total strain crack model fixed
- Shear model: Constant shear retention ($\beta = 0.1$)
- Steel reinforcement Von Mises yield criterion
- CFRP DE bar linear

FE simulation results

Load-displacement profile

Shear Capacity

Comparison with the strap system

DE & shear r/f stresses

How does prestress support?

DE

Cracking...

Control

DE + prestress

Crack angle

Crack distribution

Prestressed DE system implementation

How much bond length?

Conclusions

- 1. The FE simulations show that the prestress application to the DE system was impressive and the load capacity, ductility and stiffness of the retrofitted RC beams were increased
- The shear enhancement in the DE system could be escalated by 16% and by 22% when the DE element was subjected to 25% and 40% prestress, respectively
- 3. Considering the requirements on the bond and on the residual capacity of the retrofitting element, 25% prestress was deemed as a recommendable prestress level
- 4. The CFRP contribution towards the beam load capacity was more efficient in the prestressed beam than in the non-prestressed beam
- 5. The use of prestress in the DE system resulted also in better serviceability conditions for the beam.

Challenges and future work

- Prestressing mechanism needs to be explored
- Experimental validation is essential
- Conduct mode precise FE simulations to master the sensitivity of the DE shear retrofitting parameters

On-going experiment (with steel DE)

Acknowledgements

- •NRC 17-047 grant
- University of Peradeniya
- Co-authors M. Fatheen and S. Ahamed
- M. Bhanugopan

Thank you!

